PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Theoretical approach to the physics of fuel cells

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ion transport rate of PAFC, AFC, PEMFC, DMFC and SOFC fuel cells under the influence of an electric field and concentration gradient were evaluated for static electrolytes. AFC are the best fuel cells for high er current applications while direct methanol fuel cells DMFC are the best for lower current applications AT lower temperatures. An equation for voltage output of a general fuel cell was obtained in terms of temperature and partial pressure of reactants. Performance of a 2D fuel cell was analyzed by simulating polarization and power curves for a fuel cell operating at 60 ?C with a limiting current density of 1.5 A cm- 2. The maximum power for this fuel cell was 8.454 W delivering 82% of maximum loading current density. When the temperature was increased by one third of its original value, the maximum power increased by 6.75% and at 60 ?C for a 10 times increment of partial pressure of reactants, the maximum power increased by 2.43%.The simulated power curves of the fuel cells were best described by cubic fits.
Rocznik
Tom
Strony
15--27
Opis fizyczny
Bibliogr. 12 poz., rys., tab.
Twórcy
Bibliografia
  • [1] M. W. Verbrugge, R.F. Hill, Journal of the Electrochemical Society, 137(12) (1990) 3770-3777
  • [2] D. M. Bernardi, M. W. Verbrugge, J. A, American Institute of Chemical Engineers (AIChE) 37 (1991) 1151-1163, A, Journal of the Electrochemical Society, 139(9) (1992) 2477-2491.
  • [3] T.E. Springer, T.A. Zawodzinski, S. Gottesfeld, Journal of the Electrochemical Society, 138(8) (1991) 2334-2342.
  • [4] V. Gurau, H. Liu, S. Kakac, AIChE Journal 44(11) (1998) 2410-2422. V. Gurau, F.Barbir, H. Liu, J. Electrochem 147 (2000) 2468.
  • [5] A. Kazim, H. T. Liu, P. Forges, Journal of Applied Electrochemistry 29, (1999) 1409.
  • [6] D.Singh, D. M. Lu, N. Djilali, International Journal of Engineering Science 37 (1999) 431.
  • [7] S. Dutta, S.Shimpalee, J. W. Van Zee, Intl. J. of Heat and Mass Transfer, 44/11 (2001) 2029.
  • [8] L.You, H.Liu, International Journal of Heat and Mass Transfer 45(11) (2002) 2277-2287, Journal of Power Sources 155(2) (2006) 219-230.
  • [9] K.W.Lum, Three Dimensional Computational Modelling of a Polymer Electrolyte Fuel, Ph.D. dissertation, University of Loughborough (2003).
  • [10] M. M. Mattew, Fuel Cell Engines. New Jersey: John Wiley & Sons. (2008)
  • [11] F.Barbir, PEM Fuel Cells: Theory and Practice, Elsevier Academic Press, San Diego (2005) pp. 147–206.
  • [12] E. L. Cussler, Diffusion Mass Transfer in Fluid Systems. (Cambridge University. Press,Cambridge, (1997) 101.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0066-0006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.