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ABSTRACT

The analysis of diffraction by separate mixed-layer gofferewtudbe’s lattice is offered. Two extreme
cases of the large and small size of coherent scatterilmgse@SR) in a radial direction are considered.
The qualitative explanation of observed diffraction effects is given.
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1. INTRODUCTION

The misfit mixed-layer nanotubes SffShS with a various degree of ordering in
cylindrical layers SnSand SnS alternation were synthesized in the Weizmann Institute of
Science (Israel) by R. Tenne group [1]. Nanotubes were synthesizbd basis of flat layered
crystals Sng by extraction of a part of S atoms and forming SnS layers. Tisid wf layers
SnS and SnS, having not only various parameters of lattices, but alsoessynohlayer, results
in a curvature of flat packs and forming nanotubes.

During an experimental research the nanotubes with rather orsffinaeture were found,
on the TEM-images of which the periodically alternating in a kowignal direction of nanotube
light and dark radial (or nearly so radial) strips were obserfigd X and 2, violet line —
nanotube axis, light-blue - zero layer line). More detailed arsalybithe TEM-images has
shown, that within the strips the layers have wavy character, amddios of layers curvature is
approximately constant. Hence, to coordinate the lattices the nantdybesare bent not only
in a direction of the cylinder’s circle, but also in direction ef aiis, forming, thus, goffered
nanotube. Originally such nanotubes were named "strained", however dgeffaréd" more
corresponds to character of structure.

It is obvious, that such way of coordination is possible only for thedayéh close
longitudinal (along a nanotube’s axis) parameters of lattiae$2]. The analysis of
microdiffraction patterns has shown, that two types of layers &nfys take place in SPSnS
nanotubes: witta = 0,36 nm and developed af?2 with a = 0,63 nm, while the parameterof
SnS layer is equal 0,58 nm. Apparently, the additional bend in a directioanotube’s axis
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arises in pair of layers Sp@nd SnS, where the layer Sntasa = 0,63 nm, and this layer is
positioned on the external side of the bend. Really, the goffering takes place onlydragere
nanotubes OT (O - SnS layer, T - Si&yer) and is absent in structures OTT or OTOTT, where
the presence of an additional Sité&/er interferes with a bend.

The "additional" layer lines with reflexes are distinctly alied in the microdiffraction
patterns of goffered nanotubes (fig. 1 and 2). Similar additional liayg, located close to basic
ones, are known in superlattices diffraction researches. It attow8er the model of nanotube
structure, based on a wavy superlattice in a longitudinal directiontcaagply the known
approaches to interpretation its diffraction pattern. The measurerhawne shown, that, as in
usual superlattices, inverse value of distangdrom the basic layer line up to additional one
(fig. 1) well corresponds to longitudinal periodicity in the TEM-image, egia#t nm.

The microdiffraction patterns on fig. 1 and 2 are rather similar,elewthere is an
essential difference. The distribution of intensity on an additioyal lene near to basic layer
line 20 on fig. 1 is similar to a profile of the basic line. The analogdis¢ributions on
microdiffraction pattern of goffered nanotube on fig. 2 have obvious dispéasnm a direction
of nanotube’s axis. Interpretation of this effect requires theoretical cesafaa problem.

Fig. 1. TEM-image, icrodlffractlon pa&érn and sublattices scheme 0%-SnS nanotube
with thick radial CSR.

e — |

Fig. 2. TEM-image and microdifframonpattern of SFShS nanotube with thin radial CSR.
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As a first step let's consider positions of the latticessié circular orthogonal [2]
goffered nanotube, shown on a fig. 3 with the basic designations, and bagice$ of
diffraction by it.

2. THE LATTICE OF GOFFERED NANOTUBE

Let nanotube, oriented along axisconsists of the ordered alternating "goffered" pairs
of layers type ofA andB, having the superperiodand radius of the goffer bemg Let both
layers of everyn-th pair has the same centre of goffer curvature, located oal@ @frradiusO,

(fig. 3). Let the radius of internal layer’s point, most rematenfnanotube’s axis, is equal da
andds - thickness of layer8 andB, accordingly, and = da + dg.

The discussed way of the coordination meapsz d ds
¥ . )

that A¢ - an angle, under which the coordinated cell ‘
pair layers is visible from the centre of curvature of pajr, :
becomes the crystallographic constant. Longitudinal | a{
parameten of a lattice of coordinated layers pair has no| |
definite value and for convenience can be chosen on| an i -
internal surface of pair. | |

Let's number the sites of lattice, formed by pairs;
within the limits of superlattice’s wave by integer
variablet, and waves - by. Then the angular position |
of any pair’s sites concerning their centre of curvature| i
possible to write down as: =

& =Qe-¢, t=0+T-1,

where Ag = a £ = arcsi A
ry erg +d f

and z-coordinates of these sites and number of cells ofn
the length of wave — as: =

A 2rye ’ o ¢ —
Zn =MA+Z+rgsing, T=—2-, (1) Qn1 Om
2 a
under obvious condition < 2ry. Fig. 3. The basic designations in goffered

Radius of circles, on which the centres of nanotube.

curvature of an internal layer's waves are locatedequal topo — rq. Hence, it is possible to
write down the polar radiuses of sites of considdattice as:

Pmt = Pm ~Tg +Tg COSE, Pm=po+md. 3)
From here we can find an angle, under which theuldr parameteb ate; = 0 is seen from the
nanotube’s axis, and by it - the angular positiohsites:

¢mv:LV+5m’ v=0+pp-1, pm:% (4)
Pm b
wherev - number of site on the circlpy, - number of sites on the-th pair’s circles (integer by
definition), ey - initial azimuthal angular phase of the appradpriayer. It is obvious, that the
circular parameteb has some variation within the limits of supertatiwavelengthi in
considered model. However it is known [3], thastharameter does not influence on circular

nanotube’s strong(= 0) reflexes, which consideration is the purpafseesearch.
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3. THE STRONG REFLEXES AMPLITUDE

Let’'s write down an amplitude of diffraction batiice, defining by expressions (1), (3)
and (4), in cylindrical coordinates systeR, {*, z*} in reciprocal space:

(R ¢, Z*) ZeXF{ZH[RPthOS(¢mv p* +Zntz ]}_

m,n,v,t
N-1 T-1 1 M-1Pm—1
= > exd27iAz* n)Zex;{Zn’(E + jz*} > exf27iRomt cod@my - ¢*)].(5)
n=0 t=0 m=0 v=0
where 3 =rgsing;, (6)

M andN - number of layer pairs in hanotube and its ler{gthunits/), accordingly. Sum over
goffer periods (oven) is easily calculated and has sharp maxima, dqul at

Mz =t = _ﬁ hy =0£1%2,.... (7)

The expression (7) defines the system of layergsan reciprocal space, on which all sites of
reciprocal lattice take place. In a plare £}, that is in the section of these planes by Evald
sphere, that corresponds to the usual electrorodifraction experiment, it gives the system of
close located to each other layer lines (7), wimigmbering is the same with values of index
Let’s be limit by half plane* > 0, that meank; > 0.

With taking into account (7) amplitude transforms i

T-1 hy M-1Pm -1 _
AR ¢ )= N(-1)" 3 ex 2n7ﬂtjz 2. exH[27iRmi codgmy ~4*)]. (@)
t=0 m=0 v=0
Let’'s expand the second exponent in (8) into asef cylindrical waves according to
exp{acosy) =Jg(a) + ZZiq cos@y)dq(a). (9)
q=1
Pm-1
Al )= NP Sexd 2024 S aozom) S1
t=0 m=0 v=0
M=-1Pm~—1
e Yo 2124 |5 3 3% coddlbm - Joqlmom)= A+ Ao,
t=0 m=0 v=0 g=1
where, in view of triviality of sum over, the first addendum looks like
T-1 M -1
As(Rom)=N(-1)" 3 ex Zﬂ%ﬁtj 2 PmJo(27Rom) (10)
t=0 m=0

and gives the amplitude of so-called "strong "eredis [3].
With the purpose of estimation of strong reflexgensity distribution let's approximate
the Bessel function in (10) by cosine:

Jo(x) = \/% cosX

and, neglecting by dependencetaumder a radical, let's change the sums by places:

hy
Ae(RR) =N S BB 5 o 2% 5 fcoderman).
J_m =0 ;
Let's consider the sum ovtarhavmg presented cosine in an exponential form:

10
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3 Zoxd 2112 4 Jorlenon) - oxd-2Ram)= 61 +5),

where §; = Zex;{Zﬂ[%ﬁt + Rpmtﬂ, S = iex;{Zﬂ[%ﬁt - Rpmtﬂ : (11)
t=0 t=0

With taking into account (3) and (6), the s&n
S = exp{ZﬁR(po —rg+ md)Jx

T-1
X Zexp{errg %sm(Agt £ }exp{ng Rcos(Aet 5)] (12)
Let’'s expand two last exponents into a series fdgical waves according to

exp{asiny) = Jo(@) +2 " cosRay)Joq(a) +2i Y sin[(2q +1)y]Ipq+1(a)
g=1 g=0

and expiacosy)= ii qu(a)exdiqy) .
q— 00
Then S =exp27iR(pg —rg + md)[(Sp + S +Ss).,
where §) = JO(an j 393 (277g R)exd— iq'e)TZ_:lexdiq'Aet) =

=0 t=0
= JO(an ] 397 (2719 R)exd— iq'£)Go(q'A¢), (13)
' =—co
S = Zqu(zng ] 3190 (2R
g =~co

x{exd~i(a+20)]Gc[(a+2a)ae] + exd~i(q-2a)elGc[(a-2a)ae]t,  (14)

Z 32q+1(2”g ] Z' (2779 )
g=0

{oxt-i(q+20 + Deloul(a+2a+Dae] - exd-i(g-2a-Delosllg-2a-1ae] . 15
Here, as well as earlier, is used the sum of a kind

Glx)= Zexp(lxm) S'nNZXIX p{i(M -1)2] 16)

SIn—

which has a sharp maximumatequal to an integer ofr2the height of a maximum is equal to
M, and its width is inverse proportional to thisual For example, in the caseSf x = q'Ae, M
=T, the maximum of function is realized at
2n
n — O+ 14942
q h2 Ag h2 0;+1+2:+3:... (17)
However addendur§; of amplitude contains also the multiplier, depegdon the index
of summation over nanotube’s layers (ovey. This summation, after rejection of factors,
insignificant for this analysis, gives the ampliétgl multiplier G(2zRd), which also are looking
like (16). Hence, the amplitude of strong reflexgzresents a number of addendums, each of

11
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which contains product of functions of a kind (1&(2zRd) on the one hand, and one of
functionsGo(q'Ae), G[(q’ £ 20)A¢] andG{ (g’ + 29 £ 1)A¢] - on another. Last three functions do

not depend on spatial variadR but influence a choice of the members of series q, the
Bessel functions of which contain this variable.

Thus, the character of an arrangement of amplitndeima in a scal® depends on the
correlation between the widths of functions of mack(16), which are determined by paramefers
and M, in each product: the narrower function determif@sn and position of diffraction
pattern maxima and the wider - modulates theimsitees. Let's consider extreme cases of thick
and thin radial CSR.

3.1. Thethick radial CSR (M >> T)
In this case maxima of functioB(2zRd) are narrow and intensive and positioned in
points of it's extremum:

27/Rd=21 = R,zla, | =0,1£2,... (18)

It means, that the arrangement of strong reflexedantical on all layer lines of such nanotube.
Such microdiffraction pattern is given in a fig.with the only difference, that it belongs not
circular nanotube, which lattice is considered #&oralysis simplification, but longitudinal
monoclinic [2, 3]. Let's compare the relative irdities of layer lines, determined by addendums
S, S andSs.

Let’s consider addendu®. Maxima of functionGy(q’'A¢) are in points (17). On the
other hand, the main maximum of Bessel funcllg(2zry4R) is close to value of argument, equal
to its index, that means, that in points (18) tremmaxima of Bessel functions with = 2zrl/d
are positioned. It is obvious, that generally tbasdition can not be satisfied simultaneously
with condition (17). It means, that addend@spractically does not influence relative intensity
of layer lines.

AddendumS; in points (18) looks IikeS'C =S + S, Where

SV —ZJZq(Zﬂg le AR (2779 jexp[ i(a+20)e]Gc[(a+2a)ag],

g'=—c0

+

S5 = 3, 924( 21| X 1994 2mg 1 exd-i(a-2aleloclla-2alae].
q'=—o
The main maxima of Bessel functions of addend§inare located close to poings ~ 2zrl/d

and 2y = 2zrghi/A. On the other hand indexgsandq are connected with each other by area of
noticeable values of functioB(gq’ + 29)A¢], which rather wide maximum is in a poinf’ (+
20)Ae = 2zh,. Thus, we obtain approximate equality:
I hy hy hy |
2y —+2My—=2T—= = =A=-—|. 19
94 9 Ag N ( a dj (19)
As 1 = Ta, then in the last equality

hy = Ta(hz ]:Tr& —Td—a|

the integer value olf; is provided only at = 0. With taking into account (7) it means, that o
greatest intensity is the layer line (the basietdine), located close to

= _Th (20)
a /A
ath, >0, as is observed in a fig. 1.

12
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As maxima of functiorG[(q’ + 2q)Ac] have some width, the layer lines, getting in the
appropriate interval, also have appreciable intgng¢additional layer lines). Let's take
differential from both parts of (19) at a constanutex hy, that is close to (20):

Ay ~ -Al, (22)
where the approximate equality is replaced with arknof proportionality, as the interval of
intensive layer lines depends on experimental ¢mmd too. From (21) it is visible, that the
guantity of additional layer lines is proportionalvalue of index, that also is observed in a fig.

1. AddendumS;; gives the similar result fdr, < 0.
AddendumS; in points (18) looks Iiké's = S35 — Sq1, where

= qu.,.l(Zﬂg :1) i (2779 jexp{ i(q+29 +1)]Gs[(or+2q + 1)Ag],

q=1 q'=—o0
Sg = §1J2q+1(2ng %quiw (2779 jexp{ i(q-29 - 1)e|Gs[(q-2q - 1)a¢].

Maxima of Bessel functions ir8;’| take place under conditiong! ~ 2argl/d and 2] + 1 =

2nrqhy/Z, and maximum of functioss(q’ + 20)A¢] is in a point ¢’ + 29 + 1)Ae = 2zhy, that
again gives (19) and all its consequences.

3.2. Thethinradial CSR (M < T).

The basis for consideration of such model isdtiaction pattern in a fig. 2, which
radially lengthened basal reflexes allow to spdatuathe small CSR sizes in this direction. In
this case maxima of functiorGy(q’'A¢), G[(q" + 29)A¢] and G{(q’ + 29 = 1)A¢] in (13), (14)
and (15), accordingly, are narrower and intendivan G(2zRd), and it is possible to be limited
to their peak values.

Let’'s consider an addendusy at peak value af from (17).

Slhy) =i q'TJO(an %)Jq- (277g R)exd— iq'e).

Main maximum of the second Bessel function takesepéd
27 _ h2
But on the other hand summation over layers (owegives condition (18) again, though with a
little wider maxima. However it is obvious, that ihis case these two conditions are
incompatible too. Hence, addend&has not essential influence on positions of strefigxes.
A condition of a maximum of functiorG (g’ + 29)A¢], included inS, looks like:

(q+2q)ae =27, =  2q= i( ZZ;Z - Cl'j ,

and functior, at this conditionScp, = S;’hz +Sch, » Where

S:hz =T(—]_)Th2 IZI qqu' (Zﬂg R)]z,—hz_ql(ZHQ %j ,
gq=-c0 Ae

Sc_hz :T( )th_Z:_:qu (ZﬂgR)J 27112 q(Zﬂg%j

and is used:/Ae = T/2. As before, let’'s write down fosghz the approximate equality from

conditions of Bessel functions maxima at the peslker(18) of function&(2zRd):

13
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h.l. ~ h2 _ | - h2 _|_
Zﬂg/1 27TA£ 2ﬂgd = 0] A(a dj'
We again have obtained (19), that means, as inctige the basic layer line is closezto
determined by (20), too. However functi@{2zRd) in this case - modulating, the positions of
peaks on the layer line are determined by maxinfaraftionG.[(g’ + 20q)Ac]. Then, substituting
in last equality the current value of argumBnnstead of its peak valu&l, we obtain:

_hh h

R =2

This expression differs from its analogue (18) &ocase of thick radial CSR in two
aspects. First, the positions of strong reflexeshmnlayer line are determined not by "basal”
interlayer spacingl, but "longitudinal” lattice parameter Secondly, the positions of all series
displaces on distand®/. at transition from one layer line to another, tlsabbserved on the
diffraction pattern in a fig. 2.

The estimation, similar to the previous itemwoadith of interval near the value (20), in
which the additional layer lines take place, giaggin expression (21), that also is observed on
the diffraction pattern in a fig. 2.

AddendumS; from (11) gives similar expressions for other camahbon of indexe’'sh,,

h, andl signs.

4. CONCLUSIONS

The analysis of formation of strong reflexes frahe offered multiwall circular
orthogonal mixed-layer goffered nanotube’s latticedel, consisting from alternating layers of
type A andB, has shown:

1. All reflexes are located on system of layerdige= hy//, whereh; - index of layer line
(integer), andi - period of goffering. However the greatest initgnkave reflexes of
basic layer lines, which are close to vattieappropriate to the coordinated longitudinal
perioda, that isz* = hy/a, whereh, - integer.

2. At increase of the strong reflex’s indéxntensity of additional layer lines become
appreciable, so, that the width of interval (lengdlgs ) of layer lines, having
appreciable intensity, is proportional to this ixde

3. In case of thick radial CSR the strong reflexeslocated on the layer line as those from
not goffered lattice. In case of thin radial CSR Heries of strong reflexes are displaced
lengthways a layer line depending on its intiex
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