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ABSTRACT  

The analysis of diffraction by separate mixed-layer goffered nanotube’s lattice is offered. Two extreme 
cases of the large and small size of coherent scattering regions (CSR) in a radial direction are considered. 
The qualitative explanation of observed diffraction effects is given. 
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1.  INTRODUCTION 
 

The misfit mixed-layer nanotubes SnS2/SnS with a various degree of ordering in 
cylindrical layers SnS2 and SnS alternation were synthesized in the Weizmann Institute of 
Science (Israel) by R. Tenne group [1]. Nanotubes were synthesized on the basis of flat layered 
crystals SnS2 by extraction of a part of S atoms and forming SnS layers. The misfit of layers 
SnS2 and SnS, having not only various parameters of lattices, but also symmetry of layer, results 
in a curvature of flat packs and forming nanotubes. 

During an experimental research the nanotubes with rather original structure were found, 
on the TEM-images of which the periodically alternating in a longitudinal direction of nanotube 
light and dark radial (or nearly so radial) strips were observed (fig. 1 and 2, violet line – 
nanotube axis, light-blue - zero layer line). More detailed analysis of the TEM-images has 
shown, that within the strips the layers have wavy character, and the radius of layers curvature is 
approximately constant. Hence, to coordinate the lattices the nanotubes layers are bent not only 
in a direction of the cylinder’s circle, but also in direction of its axis, forming, thus, goffered 
nanotube. Originally such nanotubes were named "strained", however term "goffered" more 
corresponds to character of structure. 

It is obvious, that such way of coordination is possible only for the layers with close 
longitudinal (along a nanotube’s axis) parameters of lattices a [2]. The analysis of 
microdiffraction patterns has shown, that two types of layers SnS2 always take place in SnS2/SnS 
nanotubes: with a = 0,36 nm and developed on π/2 with a = 0,63 nm, while the parameter a of 
SnS layer is equal 0,58 nm. Apparently, the additional bend in a direction of nanotube’s axis 
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arises in pair of layers SnS2 and SnS, where the layer SnS2 has a = 0,63 nm, and this layer is 
positioned on the external side of the bend. Really, the goffering takes place only in mixed-layer  
nanotubes OT (O - SnS layer, T - SnS2 layer) and is absent in structures OTT or OTOTT, where 
the presence of an additional SnS2 layer interferes with a bend. 

The "additional" layer lines with reflexes are distinctly observed in the microdiffraction 
patterns of goffered nanotubes (fig. 1 and 2). Similar additional layer lines, located close to basic 
ones, are known in superlattices diffraction researches. It allows to offer the model of nanotube 
structure, based on a wavy superlattice in a longitudinal direction, and to apply the known 
approaches to interpretation its diffraction pattern. The measurements have shown, that, as in 
usual superlattices, inverse value of distance ∆s from the basic layer line up to additional one 
(fig. 1) well corresponds to longitudinal periodicity in the TEM-image, equal ≈ 5,4 nm. 

The microdiffraction patterns on fig. 1 and 2 are rather similar, however there is an 
essential difference. The distribution of intensity on an additional layer line near to basic layer 
line 20l on fig. 1 is similar to a profile of the basic line. The analogous distributions on 
microdiffraction pattern of goffered nanotube on fig. 2 have obvious displacements in a direction 
of nanotube’s axis. Interpretation of this effect requires theoretical research of a problem. 
 

 

 

      
Fig. 1. TEM-image, microdiffraction pattern and sublattices scheme of  SnS2-SnS nanotube 

with thick radial CSR. 

      
Fig. 2. TEM-image and microdiffraction pattern of  SnS2-SnS nanotube with thin radial CSR. 

∆s 

∆s 

20l 
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  As a first step let’s consider positions of the lattice sites of circular orthogonal [2] 
goffered nanotube, shown on a fig. 3 with the basic designations, and basic features of 
diffraction by it. 
 
 
2.  THE LATTICE OF GOFFERED NANOTUBE 
 
  Let nanotube, oriented along axis z, consists of the ordered alternating "goffered" pairs 
of layers type of A and B, having the superperiod λ and radius of the goffer bend rg. Let both 
layers of every m-th pair has the same centre of goffer curvature, located on a circle of radius Om 
(fig. 3). Let the radius of internal layer’s point, most remote from nanotube’s axis, is equal ρ0, dA 
and dB - thickness of layers A and B, accordingly, and d = dA + dB. 

The discussed way of the coordination means 
that ∆ε - an angle, under which the coordinated cell of 
pair layers is visible from the centre of curvature of pair, 
becomes the crystallographic constant. Longitudinal 
parameter a of a lattice of coordinated layers pair has no 
definite value and for convenience can be chosen on an 
internal surface of pair. 

Let's number the sites of lattice, formed by pairs, 
within the limits of superlattice’s  wave by integer 
variable t, and waves - by n. Then the angular position εt 
of any pair’s sites concerning their centre of curvature is 
possible to write down as: 

εεε −∆= tt ,  10 −÷= Tt , 

where 
gr

a=∆ε , ( )drg +
=

2
arcsin

λε , 

and z-coordinates of these sites and number of cells on 
the length of wave – as: 

 tgnt rnz ελλ sin
2

++= ,   
a

r
T

gε2
= ,      (1) 

under obvious condition gr2≤λ . 

Radius of circles, on which the centres of 
curvature of an internal layer’s waves are located, is equal to ρ0 – rg. Hence, it is possible to 
write down the polar radiuses of sites of considered lattice as: 
 tggmmt rr ερρ cos+−= ,  mdm += 0ρρ .    (3) 

From here we can find an angle, under which the circular parameter b at εt = 0 is seen from the 
nanotube’s axis, and by it - the angular positions of sites: 

 m
m

mv v
b ε

ρ
ϕ += ,   10 −÷= mpv , 

b
p m

m
πρ2= ,    (4) 

where v - number of site on the circle, pm - number of sites on the m-th pair’s circles (integer by 
definition), εm - initial azimuthal angular phase of the appropriate layer. It is obvious, that the 
circular parameter b has some variation within the limits of superlattice wavelength λ in 
considered model. However it is known [3], that this parameter does not influence on circular 
nanotube’s strong (k = 0) reflexes, which consideration is the purpose of research. 
 
 
 
 
 

     z   dA          dB 

 
 
 

      a 
 
 
 

        ∆ε 
        rg           λ 
 ρ0 
         
 
 
 
 
 
 
  rg 
     Om-1     Om         d 

 
Fig. 3. The basic designations in goffered 

nanotube. 
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3.  THE STRONG REFLEXES AMPLITUDE 
 
  Let’s write down an amplitude of diffraction by lattice, defining by expressions (1), (3) 
and (4), in cylindrical coordinates system {R, φ*, z*} in reciprocal space: 
 ( ) ( )[ ]{ }=+−= ∑
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ntmvmt zzRizRA

,,,

**cos2exp**,, ϕϕρπϕ  
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where tgt r εβ sin= ,          (6) 

M and N - number of layer pairs in nanotube and its length (in units λ), accordingly. Sum over 
goffer periods (over n) is easily calculated and has sharp maxima, equal to N, at 

 ππλ 1* hz =  ⇒  
λ
1*

h
z = , ,...2,1,01 ±±=h .    (7) 

The expression (7) defines the system of layer planes in reciprocal space, on which all sites of  
reciprocal lattice take place. In a plane {R, z*}, that is in the section of these planes by Evald 
sphere, that corresponds to the usual electron microdiffraction experiment, it gives the system of 
close located to each other layer lines (7), which numbering is the same with values of index h1. 
Let’s be limit by half plane z* ≥ 0, that means h1 ≥ 0. 

With taking into account (7) amplitude transforms in: 
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Let’s expand the second exponent in (8) into a series of cylindrical waves according to 
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where, in view of triviality of sum over v, the first addendum looks like 
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and gives the amplitude of so-called "strong " reflexes [3]. 
  With the purpose of estimation of strong reflexes intensity distribution let’s approximate 
the Bessel function in (10) by cosine: 

 ( ) x
x
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2
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≈  

and, neglecting by dependence on t under a radical, let’s change the sums by places: 
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Let's consider the sum over t, having presented cosine in an exponential form: 
 
  



International Letters of Chemistry, Physics and Astronomy 2 (2012) 7-14 

 11

 

 ( ) ( )[ ] ( )21

1

0

1
2

1
2exp2exp2exp

2

1
SSiRiR

h
i

T

t
mtmtt +=−+








∑

−

=
ρπρπβ

λ
π , 

where ∑
−

=















 +=
1

0

1
1 2exp

T

t
mtt R

h
iS ρβ

λ
π ,      ∑

−

=















 −=
1

0

1
2 2exp

T

t
mtt R

h
iS ρβ

λ
π .  (11) 

With taking into account (3) and (6), the sum S1: 
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Let’s expand two last exponents into a series of cylindrical waves according to 
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Here, as well as earlier, is used the sum of a kind  
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which has a sharp maximum at x, equal to an integer of 2π, the height of a maximum is equal to 
M, and its width is inverse proportional to this value. For example, in the case of S0: x = q’∆ε, M 
= T, the maximum of function is realized at 

 
ε
π

∆
= 2

' 2hq ,  ;...3;2;1;02 ±±±=h       (17) 

  However addendum S1 of amplitude contains also the multiplier, depending on the index 
of summation over nanotube’s layers (over m). This summation, after rejection of factors, 
insignificant for this analysis, gives the amplitude’s multiplier G(2πRd), which also are looking 
like (16). Hence, the amplitude of strong reflexes represents a number of addendums, each of  
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which contains product of functions of a kind (16): G(2πRd) on the one hand, and one of 
functions G0(q’∆ε), Gc[(q’ ± 2q)∆ε] and Gs[(q’ ± 2q ± 1)∆ε] - on another. Last three functions do  
 
not depend on spatial variable R, but influence a choice of the members of series over q', the 
Bessel functions of which contain this variable. 

Thus, the character of an arrangement of amplitude maxima in a scale R depends on the 
correlation between the widths of functions of a kind (16), which are determined by parameters T 
and M, in each product: the narrower function determines form and position of diffraction 
pattern maxima and the wider - modulates their intensities. Let's consider extreme cases of thick 
and thin radial CSR. 
 
3.1. The thick radial CSR (M >>  T) 
  In this case maxima of function G(2πRd) are narrow and intensive and positioned in 
points of it’s extremum: 

 lRd ππ 22 =  ⇒  
d

l
Rl = , ,...2,1,0 ±±=l .     (18) 

It means, that the arrangement of strong reflexes is identical on all layer lines of such nanotube. 
Such microdiffraction pattern is given in a fig. 1 with the only difference, that it belongs not 
circular nanotube, which lattice is considered for analysis simplification, but longitudinal 
monoclinic [2, 3]. Let's compare the relative intensities of layer lines, determined by addendums 
S0, Sc and Ss. 
  Let’s consider addendum S0. Maxima of function G0(q’∆ε) are in points (17). On the 
other hand, the main maximum of Bessel function Jq’(2πrgR) is close to value of argument, equal 
to its index, that means, that in points (18) the main maxima of Bessel functions with q’ = 2πrgl/d 
are positioned. It is obvious, that generally this condition can not be satisfied simultaneously 
with condition (17). It means, that addendum S0 practically does not influence relative intensity 
of layer lines. 

Addendum Sc in points (18) looks like: −+ += clcl
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 ( )[ ] ( )[ ]εεπ
λ

π ∆++−














= ∑∑
∞

−∞=

∞

=

+ qqGqqi
d

l
rJi

h
rJS c

q
gq

q

q
gqcl 2'2'exp22

'
'

'

1

1
2 , 

 ( )[ ] ( )[ ]εεπ
λ

π ∆−−−














= ∑∑
∞

−∞=

∞

=

− qqGqqi
d

l
rJi

h
rJS c

q
gq

q

q
gqcl 2'2'exp22

'
'

'

1

1
2 . 

The main maxima of Bessel functions of addendum +
clS  are located close to points q’ ≈ 2πrgl/d 

and  2q ≈ 2πrgh1/λ. On the other hand indexes q' and q are connected with each other by area of 
noticeable values of function Gc[(q’ + 2q)∆ε], which rather wide maximum is in a point (q’ + 
2q)∆ε = 2πh2. Thus, we obtain approximate equality: 
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As λ ≈ Ta, then in the last equality 
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the integer value of h1 is provided only at l = 0. With taking into account (7) it means, that of 
greatest intensity is the layer line (the basic layer line), located close to 

 
λ

22*
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a

h
z ≈≈          (20) 

at h2 > 0, as is observed in a fig. 1. 
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  As maxima of function Gc[(q’ + 2q)∆ε] have some width, the layer lines, getting in the 
appropriate interval, also have appreciable intensity (additional layer lines). Let's take 
differential from both parts of (19) at a constant index h2, that is close to (20): 

lh ∆−∆ ~1 ,          (21) 
where the approximate equality is replaced with a mark of proportionality, as the interval of 
intensive layer lines depends on experimental conditions too. From (21) it is visible, that the 
quantity of additional layer lines is proportional to value of index l, that also is observed in a fig. 

1. Addendum −
clS  gives the similar result for h2 < 0. 

 Addendum Ss in points (18) looks like −+ −= slsl
l
s SSS , where 
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Maxima of Bessel functions in +slS  take place under conditions: q’ ≈ 2πrgl/d and 2q + 1 ≈ 

2πrgh1/λ, and maximum of function Gs[(q’ + 2q)∆ε] is in a point (q’ + 2q + 1)∆ε = 2πh2, that 
again gives (19) and all its consequences. 
 
3.2. The thin radial CSR (M <  T). 
  The basis for consideration of such model is the diffraction pattern in a fig. 2, which 
radially lengthened basal reflexes allow to speak about the small CSR sizes in this direction. In 
this case maxima of functions G0(q’∆ε), Gc[(q’ ± 2q)∆ε] and Gs[(q’ ± 2q ± 1)∆ε] in (13), (14) 
and (15), accordingly, are narrower and intensive, than G(2πRd), and it is possible to be limited 
to their peak values. 

Let’s consider an addendum S0 at peak value of q' from (17). 
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But on the other hand summation over layers (over m) gives condition (18) again, though with a 
little wider maxima. However it is obvious, that in this case these two conditions are 
incompatible too. Hence, addendum S0 has not essential influence on positions of strong reflexes. 

A condition of a maximum of functions Gc[(q’ ± 2q)∆ε], included in Sc, looks like: 
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and is used: ε/∆ε ≈ T/2. As before, let’s write down for +
2chS the approximate equality from 

conditions of Bessel functions maxima at the peak value (18) of functions G(2πRd): 
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We again have obtained (19), that means, as in this case the basic layer line is close to z*, 
determined by (20), too. However function G(2πRd) in this case - modulating, the positions of 
peaks on the layer line are determined by maxima of function Gc[(q’ + 2q)∆ε]. Then, substituting 
in last equality the current value of argument R instead of its peak value l/d, we obtain: 
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  This expression differs from its analogue (18) for a case of thick radial CSR in two 
aspects. First, the positions of strong reflexes on the layer line are determined not by "basal" 
interlayer spacing d, but "longitudinal" lattice parameter a. Secondly, the positions of all series 
displaces on distance h1/λ at transition from one layer line to another, that is observed on the 
diffraction pattern in a fig. 2. 
  The estimation, similar to the previous item, of width of interval near the value (20), in 
which the additional layer lines take place, gives again expression (21), that also is observed on 
the diffraction pattern in a fig. 2. 
  Addendum S2 from (11) gives similar expressions for other combination of indexe’s h1, 
h2 and l signs. 
 
 
4. CONCLUSIONS 
 
  The analysis of formation of strong reflexes from the offered multiwall circular 
orthogonal mixed-layer goffered nanotube’s lattice model, consisting from alternating layers of 
type A and B, has shown: 

1. All reflexes are located on system of layer lines z* = h1/λ, where h1 - index of layer line 
(integer), and λ - period of goffering. However the greatest intensity have reflexes of 
basic layer lines, which are close to value z*, appropriate to the coordinated longitudinal 
period a, that is z* = h2/a, where h2 - integer. 

2. At increase of the strong reflex’s index l intensity of additional layer lines become 
appreciable, so, that the width of interval (lengthways z*) of layer lines, having 
appreciable intensity, is proportional to this index. 

3. In case of thick radial CSR the strong reflexes are located on the layer line as those from 
not goffered lattice. In case of thin radial CSR the series of strong reflexes are displaced 
lengthways a layer line depending on its index h1. 
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