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ABSTRACT      Photovoltaic Power Plants (PVPP) are classified as  
power energy sources with non-stabile supply of electric energy. It is 
necessary to back up power energy from PVPP for stabile electric 
network operation. We can set an optimal value of back up power 
energy with using a variety of prediction models and methods for 
PVPP Power output prediction. Fuzzy classifiers and fuzzy rules can 
be informally defined as tools that use fuzzy sets or fuzzy logic for 
their operations. In this paper, we use genetic programming to evolve  
a fuzzy classifier in the form of a fuzzy search expression to predict 
PVPP Power output. 
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1. INTRODUCTION 
 

Owing to energy legislation regulating business in the Czech Republic 
due to which electricity redemption prices are high and disproportional to  
those in neighbouring countries, the number of requests to connect wind  
and photovoltaic power plants into the distribution networks has increased 
immensely. The enormous growth of the installed capacity of wind and 
photovoltaic power plants in recent years has had an adverse impact on the 
electricity supply system in the Czech Republic and other EU countries as well. 

This situation, after adopting respective measures and an act at the  
end of 2010, has attenuated and the increase in new plant construction in 2011 
has slowed down. The installed capacity of photovoltaic power plants was 
1,958.38 MW (approx. 8% of the installed capacity of the electric supply system 
of the Czech Republic) as of 1 March 2011 (latest published data). 

However, the operation of the plants installed by the end of 2010  
will continue to have an adverse impact on the operation of the distribution 
networks in the years to come as well. Besides the negative impacts on voltage 
quality such as the increased values of harmonic voltage, total harmonic 
distortion or flicker perception rate that are largely caused by using semi-
conductor technology, the photovoltaic power plants have an adverse impact  
on the electric supply system through power supply instability caused by the 
variability of weather conditions in installation sites. These are the sources with 
large variability of supplied power.  

The power supplied by a photovoltaic power station is changing very 
dynamically as a result of the changes in solar radiation intensity. To eliminate 
such rapid changes in the volume of supplies of power or complete shutdown  
of these generation units, a regulation system is used by the network operator 
for securing stable operation of the network. For the regulation it is necessary  
to use power that is allocated in power plants and that serves just for the 
regulation purposes. The size of the regulation output needed depends on the 
output size of operated power plants. As the power supply from unstable 
renewable sources changes over time, the calculation of the size of needed 
regulation output is relatively complex because the change of supplied power 
from photovoltaic power plants takes a matter of just minutes. This calculation is 
based on planning power supplies from all sources connected to the electricity 
supply system, thus also from photovoltaic power plants. As the supply from 
these sources is unstable, monitoring photovoltaic plants operation is important 
for planning the size of reserves but the key is mainly the possibility to forecast 
the power generation from these sources for certain time intervals of future 
operation, for instance for intervals of 12, 24 or 36 hours. Currently predicting 
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for longer intervals has not had greater importance due to the errors that  
we make in predicting as a result of the large variability of the factors used for 
the prediction. 

Nowadays a number of mathematical methods are used for predicting 
electricity generation from such unstable sources. These methods are based on 
employing e.g. meteorological models, time series, neural networks, statistical 
methods or fuzzy logic. 

The models that are commonly used predict solar radiation energy, which 
is basically the same as for predicting electric power generation. This happens 
in a couple of steps or by combining several of the above methods. As an 
example, the most common procedure shown in [7] can be mentioned, where 
predicting is divided into two consecutive steps. 

In the first stage solar energy is normalized using the model for a so-called 
clear sky with the aim of creating a stable time line. Whereas the standard 
methods of linear time lines for predicting solar radiation or generated electric 
power can be employed subsequently.  

At this stage, the quality of the clear sky model is quite crucial. This 
model is used for dividing solar radiation into the direct and diffusion radiation 
as the ratio of individual solar radiation components changes depending on  
the amount of clouds. In the case of a completely clear sky the solar radiation 
contains a high share of direct radiation, and vice versa when the sky is 
overcast – the share of direct radiation is minimal and diffusion radiation 
prevails. The share of individual radiation components is connected with the 
type of the panels that are used in the photovoltaic power plant as each 
generation of photovoltaic panels can absorb a different solar radiation 
component. Monocrystalline panels absorb just the direct component of solar 
radiation, while polycrystalline panels are able to absorb both components, both 
the direct and the diffusion component.  

In the second stage neural networks, genetic algorithms or fuzzy logic 
are used, with the possibility of large input variability of these models for the 
direct prediction of solar radiation energy or generated electric power. 

The model presented in this article makes use of the possibilities of 
genetic programming that is applied for finding the fuzzy classifier by means  
of which the prediction is made. 
 
 
 

2. GENETIC PROGRAMMING FOR POWER  
    OUTPUT PREDICTION 
 

Genetic programming is a powerful machine learning technique from  
the wide family of evolutionary algorithms. In contrast to other evolutionary 
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algorithms, it can be used to evolve complex hierarchical tree-like structures 
and symbolic expressions.  

In this work, we use genetic programming to evolve fuzzy classifiers for  
a photovoltaic plant power output prediction. In particular, genetic programming 
is employed to evolve a symbolic fuzzy classifier that is used to estimate 
photovoltaic plant power output from current values of attributes read from 
various sensors (e.g. light intensity sensors, wind speed sensors etc.).  

The fuzzy classifier can be seen as a special type of decision tree. In 
contrast to traditional decision trees, it takes inspiration from fuzzy information 
retrieval. The fuzzy classifier used in this work uses both, operators and 
evaluation functions, that are commonly utilized in fuzzy information retrieval. 

Genetic programming is a supervised machine learning algorithm that 
can generate the classifiers from a training data set. Such a fuzzy classifier can 
be subsequently used for efficient and fast prediction of a values of an output 
variable, for prediction of product quality, for classification of data samples, and 
generally to assign labels to data. Importantly, the output of the classifier is  
a real value, i.e. it can be used to estimate course of a real valued function. For 
convenience, we will call the predictor “a classifier” in the remainder of the text. 

Artificial evolution of fuzzy classifiers is a promising approach to data 
mining because genetic programming has proven very good ability to find 
symbolic expressions in various application domains. The general process of 
classifier evolution can be used to evolve classifiers for different data classes 
and data sets with different properties. The resulting classifiers can be used  
as standalone data labeling tools or participate in collective decision in an 
ensemble of data classification methods. 
 
 
 

3. GENETIC PROGRAMMING 
  

Genetic programming (GP) is an extension to genetic algorithms, 
allowing work with hierarchical, often tree-like, chromosomes with an unlimited 
length [1, 2]. The GP shares the workflow with genetic algorithms (Fig. 1). It 
iteratively evolves a population of encoded candidate solutions (chromosomes) 
that are modified by so called genetic operators so that the goodness of the 
solutions improves. 

GP was introduced as a tool to evolve whole computer programs and 
represented a step towards adaptable computers that could solve problems 
without being programmed explicitly [1, 3]. 

In GP the chromosomes take the form of hierarchical variably-sized 
expressions, point-labeled structure trees. The trees are constructed from nodes 
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of two types, terminals and functions. More formally, a GP chromosome is a 
symbolic expression created from terminals t from the set of all terminals T and 
functions f from the set of all functions F satisfying the recursive definition [3]: 

1. ∀ t ∈ T : t is the correct expression; 

2. ∀ f ∈ F : f (e1, e2, …, en) is the correct expression if f ∈ F and e1, …, en 
are correct expressions; 

3. there are no other correct expressions. 

GP chromosomes are evaluated by the recursive execution of instructions 
corresponding to tree nodes [3]. Terminal nodes are evaluated directly (e.g.  
by reading an input variable) and functions are evaluated after left-to-right 
depth-first evaluation of their parameters. 
 

 1. Define objective function 
2. Encode initial population of possible solutions as fixed-

length binary strings and evaluate chromosomes in 
initial population using objective function 

3.  Create new population (evolutionary search for better 
solutions): 
a.  Select suitable chromosomes for reproduction 

(parents) 
b. Apply crossover operator to parents with respect to 

crossover probability to produce new chromosomes 
(offspring) 

c. Apply mutation operator to offspring chromosomes 
with respect to mutation probability. Add newly 
constituted chromosomes to new population 

d. Until the size of new population is smaller than size 
of current population go back to a. 

e. Replace current population by new population 
4. Evaluate current population using objective function 
5. Check termination criteria; if not satisfied go back to III. 

 

Fig. 1. Genetic algorithms workflow 

 
Genetic operators are applied to the nodes in the tree-shaped chro-

mosomes. A crossover operator is implemented as the mutual exchange of 
randomly selected sub-trees of the parent chromosomes. 

Mutation has to modify the chromosomes by pseudo-random arbitrary 
changes in order to prevent premature convergence and broaden the coverage 
of the fitness landscape. Mutation could be implemented as: 

1. removal of a sub-tree at a randomly chosen node; 

2. replacement of a randomly chosen node by a newly generated sub-tree; 

3. replacement of node instruction by a compatible node instruction (i.e.  
a terminal can be replaced by another terminal, a function can be 
replaced by another function of the same arity); 

4. a combination of the above. 
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4. FUZZY CLASSIFIER EVOLUTION  
    BY GENETIC PROGRAMMING 
 

We use an algorithm for fuzzy classifier evolution inspired by the principles 
of fuzzy information retrieval and evolutionary optimization of search queries [4]. 

The fuzzy classifier takes form of a symbolic expression with data 
features (data set attributes) as terminals and operators as non-terminal  

nodes. Both terminals and non- 
-terminals are weighted. An 
example of the fuzzy classifier 
is shown in Figure 2. 

Fuzzy classifier is eva-
luated for each data sample in 
the training collection. For each 
terminal, the value of corres-

ponding feature is taken. The operators are implemented with the help of 
standard fuzzy set operators, i.e. x and y is implemented as min(x,y), x or y  
is implemented as max(x,y), and not x is implemented as 1 – x. The standard 
implementation of fuzzy set operators was used but any other pair of t-norm  
and t-conorm or Ordered Weighted Averaging (OWA) operators could be used. 

Classifier weights are used to smoothen the influence of classifier 
operators and to blur the meaning the data features. Its use allows forming rich 
and flexible classification statements. There are many ways to interpret and 
subsequently compute the classifier weights. In this work, the classifier weights 
are interpreted as threshold (e.g. data samples with feature values greater than 
the corresponding classifier weight are awarded by greater value) [5]: 
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where P(a) and Q(a) are coefficients used for tuning the threshold curve. P(a) 
and Q(a) used in our implementation are P(a) = (1+a)/2 and Q(a) = (1-a2)/4. 
The other symbols in (1) are: t represents a feature in the data set, d is a data 
sample, F(d,t) is the value of feature t in data sample d, a is the weight  
of feature t in the classifier. 

The evaluation of a classifier over the training data set assigns to each 
data record real value from the interval [0;1] which can be interpreted as 
membership degree of the data record in a fuzzy set defined by the classifier. 

 
 

Fig. 2. An example of a fuzzy classifier  
feature 1:0.269 or: 0.911 feature 2:0.0861 
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The fitness value of the classifier is then evaluated using the information 
retrieval measure F-score F: 
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which is a scalar combination of precision P and recall R. Precision and recall 
are for two fuzzy sets (pattern A and classifier C) computed using Σ-count: 
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5. EXPERIMENTS 
 

The genetic programming was used to evolve a fuzzy rule to estimate the 
power output of a photovoltaic power plant. We have implemented the genetic 
programming for fuzzy rule evolution according to the principles outlined above 
and used it to evolve a classifier that estimates the output power based on the 
sensor readings. In particular, the genetic programming generated a random  
set of candidate classifiers. The classifiers had random structure and random 
weights assigned to the nodes. In the course of the evolution, both the classifier 
structure and weight values were modified using the genetic operators. 

A data set from a real photovoltaic power plant was used to evolve the 
classifier. The data set contained 24030 records containing values from 2 light 
intensity sensors and 1 wind sensor. Each record also contained the power 
output of the plant at given moment. All rows in the data matrix were normalized 
into the interval [0,1].  

Even though the data set contains only three features, the genetic 
programming is a good way to seek for the dependencies between input data 
and output value. The algorithm can generate a classifier with complex structure 
that might contain the same features many times, perhaps with different 
weights. Moreover, it can discover the way the features need to be combined  
in order to get good estimate of the output value. 
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The data set was divided into a training and testing collection. The 
training and testing collections contained 14416 and 9612 records respectively.  

 

 
Fig. 3. Real and estimated power output for first 1 000 training records 

 
The training collection was used for classifier evolution and the testing 

collection was used for the evaluation of the evolved classifier. An example of 
the real and estimated power output for first 1000 training records is shown in 
Figure 3 and an example of real and estimated power for first 1000 testing 
records is shown in Figure 4. 

 

 

Fig. 4. Real and estimated power output for first 1 000 testing records 
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We can see that the estimated power output corresponds with real power 
output quite well. The average estimation error for training collection was 0.011 
and the average estimation error for testing collection was 0.007. We also note 
that the data contained some noise (see e.g. the outlying real power output 
value in Figure 4). The noise affects both, the training and evaluation. 

The best classifier found by the algorithm was Feature0:0.121322. and 
several slightly worse classifiers contained only one sensor value as well. It 
means that the algorithm has repeatedly chosen just one of the light sensors  
as the most influential input for power output estimation. 
 
 
 

6. CONCLUSIONS 
  

Predicting electric power generation is a highly hot topic considering the 
situation that arose in the Czech Republic as a result of the inappropriately 
chosen redemption prices of electric power generated in photovoltaic power 
plants. This legislation has led to large-scale construction of photovoltaic power 
plants. By the beginning of 2009 only 65.74 MWp were installed, throughout 
2009 another approx. 400 MWp were installed, and in the course of 2010 the 
installed capacity of photovoltaic power plants reached the output of 1952 MWp. 
Such a volume of installed capacity within the electric supply system of the 
Czech Republic can cause problems in managing the system in situations when 
relatively rapid changes in power supply from these unstable sources occur. 

One of the possible solutions to this situation is the development and 
optimisation of the prediction model, which will be able to predict, for the defined 
time interval of 12, 24 or 36 hours, the volume of electric power that will probably 
be generated from photovoltaic power plants and thus will enable the distribution 
system operators to allocate a sufficient amount of regulation power in standard 
power plants that can participate in regulating the electric supply system. 

The precise determination of allocated output has not only technical 
importance but also economic importance because possible reduction of 
allocated output size leads to reducing regulation costs. 

This paper presents a soft computing method for search for an efficient 
fuzzy classifier to predict power output of a photovoltaic power plant. The algorithm 
uses genetic programming and builds on the principles of fuzzy information 
retrieval. An experimental evaluation has shown that the classifiers found by the 
algorithm provide reasonable estimate of the photovoltaic plant output power. 
The results obtained by fuzzy classifier evolution are encouraging. The generic 
algorithm can be tuned for this application domain and in the future, more soft 
computing methods for power output estimation can be investigated. 
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PRZEWIDYWANA MOC WYJŚCIOWA 
ELEKTROWNI FOTOWOLTAICZNEJ 

OKREŚLONA PRZY UśYCIU ZASAD ROZMYTYCH 
 

Lukas PROKOP,  Stanislav MISAK,  Vaclav SNÁŠEL 
Pavel KRÖMER,  Jan PLATOŠ 

 
STRESZCZENIE  Elektrownie fotowoltaiczne (EF) są klasyfikowane 
jako źródła prądu elektrycznego o niestabilnej dostawie energii 
elektrycznej. Dla stabilnej pracy sieci elektrycznej konieczne jest 
wspieranie dostawy prądu z EF. MoŜemy ustalić optymalną wartość 
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wspierającej dostawy prądu, stosując róŜne modele przewidywania  
i metody dla predykcji mocy wyjściowej z EF. MoŜliwe jest nie-
formalne określenie rozmytych klasyfikatorów i zasad jako narzędzi 
do ich działania, opartych na zbiorach rozmytych i logice rozmytej.  
W tej pracy stosujemy genetyczne programowanie do opracowania 
klasyfikatora rozmytego wyraŜenia poszukiwania mocy wyjściowej EF. 
 
Słowa kluczowe:   elektrownia fotowoltaiczna, zasady rozmyte, prze-
widywanie 
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