PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Synthesis of the cross-linked humic acid supporting palladium catalyst and its catalytic properties for Heck reaction

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cross-linked humic acid supporting palladium (CL-HA-Pd) catalyst was prepared readily and characterized by infrared analysis (IR) and thermogravimetric analysis (TG). The catalyst could catalyze the Heck reaction of aryl halide or substituted aryl halide with vinyl compounds in N2 atmosphere; the yields were above 95%. The catalyst could be recovered and reused 7 times with the Heck reaction of iodobenzene with acrylic acid, and the yield was above 75.6%. The results showed that the catalyst had high catalytic activity even at low temperature of 62°C or with a small amount of the catalyst.
Rocznik
Strony
75--79
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
autor
autor
  • Key Lab for Special Functional Materials, Ministry of Education, Henan University, Kaifeng 475000 Henan China, qijie001@163.com
Bibliografia
  • 1. Zeng, X.Ch. & Cheng, Sh.X. (2002). The main category of humic acid. Humic acid, (2): 4–6. DOI: cnki- :ISSN:1671-9212.0.2002-02-001.
  • 2. Jansen, G., Paciolla, M. & Ghabbour, E. et al (1996). The role of metal complexation in the solubility and stability of humic acid. Mater. Sci. Eng. C, 4(3): 181–187. DOI: 10.1016/ S0928-4931(96)00150-6.
  • 3. Provenzano, M.R., D’Orazio, V. & Jerzykiewicz, M., et al (2004). Fluorescence behaviour of Zn and Ni complexes of humic acids from different sources. Chemosphere, 55(6): 885–892. DOI: 10.1016/j.chemosphere.2003.11.040.
  • 4. Gonzalez-Perez, J.A., Gonzalez-Vila, F.J., Almendros, G.(2004). The effect of fi re on soil organic matter-a review. Environ. Int, 30(6): 855–870. DOI: 10.1016/j.envint.2004.02.003.
  • 5. Golonka, I., Czechowski, F. & Jezierski, A. (2005). EPR characteristics of heat treated complexes of metals with demineralised humic brown coal in air and ammonia atmosphere. Geoderma, 127(3-4): 237–252. DOI: 10.1016/j. geoderma.2004.12.005.
  • 6. Ghouas, H., Haddou, B. & Kameche, M., et al. (2012). Extraction of humic acid by coacervate: Investigation of direct and back processes. J. Hazard. Mater., 205–206: 171–178. DOI: 10.1016/j.jhazmat.2011.12.057.
  • 7. Liao, Ch.H., Lu, M.Ch. & Su, Sh.H. (2001). Role of cupric ions in the H2O2/UV oxidation of humic acid. Chemosphere, 44(5): 913–919. DOI: 10.1016/S0045-6535(00)00580-4.
  • 8. Mirza, M.A., Ahmad, N. & Agarwal, S.P., et al. (2011). Comparative evaluation of humic substances in oral drug delivery. Results in Phar. Sci, 1(1): 16–26. DOI: 10.1016/j.rinphs.2011.06.001.
  • 9. Zhang, Q.L, Zhang, G.C. & Ge, J.J. (2004). The application of humic acid in oil fi eld. Drilling fl uid & Completion Fluid, 21(3):53-55. DOI: cnki:ISSN:1001-5620.0.2004-03-015.
  • 10. Klavins, M., Dipane, J. & Babre, K.(2001). Humic substances as catalysts in condensation reactions. Chemosphere, 44(4): 737–742. DOI: 10.1016/S0045-6535(00)00294-0.
  • 11. Klavins, M. & Babre, K.(2002). Decarboxylation and alkaline colour fading reactions in presence of humic substances. Chemosphere, 49(6): 685–689. DOI: 10.1016/S0045-6535(02)00303-X.
  • 12. Bellamy, L.J. The infrared spectra of complex molecules[M]. Chapman and Hall, London, 1975.
  • 13. MacCarthy, P., Rice, J.A., Spectroscopic methods (other than NMR) for determining functionality in humic substances[M]. Wiley-Interscienece, New York, 1985.
  • 14. Stevenson, F.J., Humus chemistry: genesis, composition, reactions[M]. Wiley-Interscience, New York, 1994.
  • 15. Fan, K.N., An introduction to spectroscopy[M]. Edition 1, Higher Education Press, Beijing, 2001.
  • 16. Hardy, J.J.E, Hubert, S. & Macquarrie, D., et al. (2004). Chitosan based heterogeneous catalysts for Suzuki and Heck reactions. Green Chem. 2004, 6(1): 53–56. DOI: 10.1039/ B312145N.
  • 17. Cui, Y.C. & Zhang, L. (2005). Polyvinyl chloride-polyethylene- polyamine supported palladium complexes as high effi cient and recyclable catalysts for Heck reaction. J. Mol. Catal. A: Chem, 237(1-2): 120–125. DOI: 10.1016/j.molcata.2005.04.050.
  • 18. Kondolff, I., Doucet, H. & Santelli, M.(2003). Tetraphosphine/ palladium-catalyzed Heckreactions of aryl halides with disubstituted alkenes. Tetrahedron Lett., 44(46): 8487-8491. DOI: 10.1016/j.tetlet.2003.09.092.
  • 19. Evangelisti, C., Panziera, N., Pertici, P., et al. (2009). Palladium nanoparticles supported on polyvinylpyridine: Catalytic activity in Heck-type reactions and XPS structural studies. Journal of Catalysis, 262(2): 287–293. DOI: 10.1016/j. jcat.2009.01.005.
  • 20. Xu, Q.J, Zhang, L. & Shi, W.Zh., et al. (2009). Catalytic performances of cross-linking humic acids supported Pd/Ni bimetallic catalyst for heck reaction. Pol. J. Chem. Technol., 11(3): 22–26. 10.2478/v10026-009-0031-0.
  • 21. Raja, M.U., Ramesh, R. & Liu, Y. (2011). New binuclear Pd(II) thioamide complexes for the Heck reaction of aryl bromides. Tetrahedron Lett., 52(42): 5427–5430. DOI: 10.1016/j.tetlet.2011.07.080.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0065-0048
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.