PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Photocatalytic mineralisation of humic acids using TiO2 modified by tungsten dioxide/ hydrogen peroxide

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
TiO2 of anatase structure was modified by tungsten dioxide and H2O2 in order to obtain WO3-TiO2 photocatalyst with enhanced photocatalytic activity under both, UV and artificial solar light irradiations. WO2 was dissolved in 30% H2O2 and mixed with TiO2 in a vacuum evaporator at 70°C. Such modified TiO2 was dried and then calcinated at 400 and 600°C.The prepared samples and unmodified TiO2 were used for the photocatalytic decomposition of humic acids (Leonardite standard IHSS) in the aqueous solution under irradiations of both, UV and artificial solar light. Modification of TiO2 with tungsten dioxide and H2O2 improved separation of free carriers in TiO2 which resulted in the increase of OH radicals formation. Calcination caused an increase of anatase crystals and higher yield in OH radicals. The uncalcined samples showed high abilities for the adsorption of HA. Combination of adsorption abilities and photocatalytic activity of photocatalyst caused that the uncalcined TiO2 modified with WO2/H2O2 showed the shortest time of HA mineralisation. The mineralisation of HA under the artificial solar light was much lower than under the UV. It was proved that, although OH radicals are powerful in the decomposition of HA, adsorption can facilitate the contact of the adsorbed molecules with the photocatalyst surface and accelerate their photocatalytic decomposition.
Rocznik
Strony
54--61
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
autor
autor
  • nstitute of Chemical Technology and Environment Engineering, West Pomeranian University of Technology, Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland, beata.tryba@zut.edu.pl
Bibliografia
  • 1. Murray, C.A. & Parsons, S. (2004). Removal of NOM from drinking water: Fenton’s and photo-Fenton’s processes. Chemosphere. 54, 1017–1023. DOI: 10.1016/j.chemosphere. 2003.08.040.
  • 2. Libecki, B. (2011). The effectiveness of humic acids coagulation with the use of cationic polyacrylamides. Water Science & Technology 63, 1944–1949. DOI: 10.2166/wst.2011.194
  • 3. Wei, M.C., Wang, K.S., Hsiao, T.E., Lin, I.C., Wu, H.J., Wu, Y.L., Liu, P.H. & Chang, S.H. (2011). Effects of UV irradiation on humic acid removal by ozonation, Fentonand Fe0/air treatment: THMFP and biotoxicity evaluation. Journal of Hazardous Materials 195, 324–31. DOI: 10,1016/j.jhazmat,2011.08.044
  • 4. Tryba, B., Brożek, P., Piszcz, M. & Morawski, A.W. (2011), New photocatalyst for decomposition of humic acids in photocatalysis and photo-Fenton processes. Polish Journal of Chemical Technology 13, 8–4. DOI: 10.2478/v10026-011-0042-5.
  • 5. Wiszniowski, J., Didier, R., Surmacz-Gorska, J. & Miksch, K. (2002). Photocatalytic decomposition of humic acids on TiO2: Part I: Discussion of adsorption andmechanism. J. Photochem. Photobiol. A: Chem. 152, 267–273.
  • 6. Cho, Y. & Choi, W. (2002). Visible-light induced reactions of humic acids on TiO2. J. Photocham. Photobiol. A: Chem. 148, 129–135.
  • 7. Xuea, G., Liua, H., Chena, Q., Hills, C., Tyrerc, M. & Innocenta, F. (2011). Synergy between surface adsorption and photocatalysis during degradation of humic acid on TiO2/ activated carbon composites. Journal of Hazardous Materials 186, 765–772. DOI: 10.1016/j.jhazmat.2010.11.063.
  • 8. Dziedzic, J., Wodka, D., Nowak, P., Warszyński, P., Simon, C. & Kumakiri, I. (2010). Photocatalytic Degradation of the humic species as a method of their removal from water – comparison of UV and artifi cial sunlight irradiation. Physicochem. Probl. Miner. Process. 45, 15–28.
  • 9. Seery, M.K., George, R, Floris, P., Pillai, S.C. (2007). Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. J. Photochem. Photobiol. A: Chem. 189, 258. DOI:10.1016/j.jphotochem.2007.02.010.
  • 10. Selvam, P., Kumar, S., Sivakumar, R., Anandan, S., Madhavan, J., Maruthamuthu, P., Ashokkumar, M. (2008). Photocatalytic degradation of Acid Red 88 using Au–TiO2 nanoparticles in aqueous solutions. Water Res. 42 4878–4884. DOI:10.1016/j.watres.2008.09.027.
  • 11. Kim S., Lee, S. (2009). Visible light-induced photocatalytic oxidation of 4-chlorophenol and dichloroacetate in nitrided Pt-TiO2 aqueous suspensions, J. Photochem. Photobiol. A: Chem. 203, 145–150. DOI:10.1016/j.jphotochem.2009.01.011
  • 12. Shen, H., Mi, L., Xu, P., Shen, W. & Pei-Nan, W. (2007). Visible-light photocatalysis of nitrogen-doped TiO2 nanoparticulate films prepared by low-energy ion implantation. Appl. Surf. Sci., 253, 7024–7028. DOI:10.1016/j.apsusc.2007.02.023.
  • 13. Janus, M., Choina, J. & Morawski, A.W. (2009). Azo dyes decomposition on new nitrogen-modifi ed anatase TiO2 with high adsorptivity. J. Hazard. Mater. 166, 1–5. DOI:10.1016/j.jhazmat.2008.11.024.
  • 14. Shen, M., Wu, Z., Huang, H., Du, Y., Zou, Z. & Yang, P. (2006). Carbon-doped anatase TiO2 obtained from TiC for photocatalysis under visible light irradiation. Mat. Lett. 60, 693–697. DOI:10.1016/j.matlet.2005.09.068.
  • 15. Janus, M., Tryba, B., Kusiak, E., Tsumura, T., Toyoda, M., Inagaki, M., Morawski, A.W. (2009). TiO2 nanoparticles with high photocatalytic activity under visible light. Catal. Lett. 128, 36–39. DOI: 10.1007/s10562-008-9721-0.
  • 16. Wang, P., Yap, P.S. & Lim, T.T. (2011). C–N–S tridoped TiO2 for photocatalytic degradation of tetracycline under visible- light irradiation. Appl. Catal. A 399, 252–261.
  • 17. Li, X.Z., Li, F.B., Yang, C.L. & Ge, W.K. (2001). Photocatalytic activity of WOx-TiO2 under visible light irradiation. J. Photochem. Photobiol. A: Chem. 141, 209-217. DOI:10.1016/S1010-6030(01)00446-4.
  • 18. Song, H., Jiang, H., Liu, X. & Meng, G. (2006). Effi cient degradation of organic pollutant with WOx modifi ed nano TiO2 under visible irradiation. J. Photochem. Photobiol. A: Chem. 181, 421. DOI:10.1016/j.jphotochem.2006.01.001.
  • 19. Shifu, C., Lei, C., Shen, G. & Gengyu, C. (2005). The preparation of coupled WO3/TiO2 photocatalyst by ball milling. Powd. Technol. 160, 198-202. DOI:10.1016/j.powtec.2005.08.012
  • 20. Yang, H., Shi, R., Zhang, K., Hu, Y., Tang, A., Li, X. (2005). Synthesis of WO3/TiO2 nanocomposites via sol– gel method. J. Alloy. Comp. 398, 200. DOI:10.1016/j.jallcom. 2005.02.002.
  • 21. Ke, D., Liu, H., Peng, T., Liu, X. & Dai, K. (2008). Preparation and photocatalytic activity of WO3/TiO2 nanocomposite particles. Matt. Lett. 62, 447. DOI: 10.1016/j.matlet.2607.05.060.
  • 22. Tryba B., Piszcz M. & Morawski A.W. (2009). Photocatalytic activity of TiO2-WO3 composites. Int. J. Photoenergy. Article ID 297319. DOI:10.1155/2009/297319.
  • 23. Hathway, T., Rockefellow, E.M., Oh, Y.C., Jenks, W.S. (2009). Photocatalytic degradation using tungsten-modifi ed TiO2 and visible light: Kinetic and mechanistic effect using multiple catalyst doping strategies. J. Photochem. Photobiol. A: Chem. 207, 197–203. DOI:10.1016/j.jphotochem.2009.07.010.
  • 24. Saepurahman, Abdullah, M.A. & Chong, F.K. (2010). Preparation and characterization of tungsten-loaded titanium dioxide photocatalyst for enhanced dye degradation. J. Hazard. Mater. 176, 451–458. DOI:10.1016/j.jhazmat.2009.11.050.
  • 25. Sajjad, A.K.L., Shamaila, S., Tian, B., Chen, F. & Zhang, J. (2010). Comperative studies of operational parameters of degradation of azo dyes in visible light by highly effi cient WOx/TiO2 photocatalyst. J. Hazard. Mater. 177, 781–791. DOI:10.1016/j.jhazmat.2009.12.102.
  • 26. Akurati, K.K., Vital, A., Dellemann, J., Michalow, K., Graule, T., Ferri, D., Baiker, A. (2008). Flame-made WO3/TiO2 nanoparticles: Relation between surface acidity, structure and photocatalytic activity. Appl. Catal. B 79, 53. DOI:10.1016/j. apcatb.2007.09.036.
  • 27. Piszcz, M., Tryba, B., Grzmil, B. & Morawski, A.W. (2009). Photocatalytic removal of phenol under UV irradiation on WOx–TiO2 prepared by sol–gel method. Catal. Lett. 128, 190–196. DOI: 10.1007/s10562-008-9730-z.
  • 28. Kim, T., Burrows, A., Kiely, C.J., Wachs, I.E. (2007). Molecular/electronic structure-surface acidity relationships of model—supported tungsten oxide catalysts. J. Catal. 246, 370–381. DOI:10.1016/j.jcat.2006.12.018.
  • 29. Kwon, Y.T., Song, K.Y., Lee, W.I., Choi, G.J. & Do, Y.R. (2000). Photocatalytic behavior of WO3-loaded TiO2 in an oxidation reaction. J. Catal. 191, 192–199. DOI:10.1006/jcat.1999.2776.
  • 30. Yang, H., Zhang, D. & Wang, L. (2002). Synthesis and characterization of tungsten oxide-doped titania nanocrystallites. Matt. Lett. 57, 674–678. DOI:10.1016/S0167-577X(02)00852-2.
  • 31. Ishibashi, K., Fujishima, A., Watanabe, T., Hashimoto, K., (2000). Detection of active oxidative species in TiO2 photocatalysis using the fl uorescence technique. Electrochem. Commun. 2, 207. DOI:10.1016/S1388-2481(00)00006-0.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0065-0045
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.