PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Potential of granulated modified nanozeolites Y for MTBE removal from aqueous solutions: Kinetic and isotherm studies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Adsorption of methyl tert-butyl ether (MTBE) from aqueous solutions by granulated modifi ed nanozeolites Y was investigated. Nanozeolite Y powders were converted into granulated zeolites and subsequently modifi ed with two cationic surfactants (20 mmol/dm3), to be used as adsorbent. Granulated nanozeolites were characterized by BET surface area analysis, elemental analysis and X-ray diffractometer. Hexadecyltrimethylammonium (HDTMA-Cl) modifi ed granulated zeolite had more effective performance than N-cetylpyridinium bromide (CPB) modifi ed granulated zeolite. The most conventional adsorption isotherms and kinetic models were applied to describe MTBE adsorption and reaction dynamic, respectively. The equilibrium sorption data fi tted the Langmuir 2 isotherm model and the kinetic study was followed the pseudo-second-order model. The maximum adsorption capacities for HDTMA-Cl modifi ed zeolite and CPB modifi ed granulated zeolite were 333.33 and 142.8 mg/g, respectively as calculated by the Langmuir model. This study demonstrated that the removal of mtbe by granulated modifi ed nanozeolites Y is a promising technique.
Rocznik
Strony
1--8
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
autor
autor
autor
  • Tehran University of Medical Sciences, School of Public Health, Tehran, Iran, ahmahvi@yahoo.com
Bibliografia
  • 1. Mortazavi, S., Nikpey, A., Rezaee, A., Asilian, H., Khavanin, A. & Kazemian, H. (2005). Methl Tert-Butyl Ether (MTBE) degradiation by a microbial consortium. Am. J. Environ Sci., 1, 69–73.
  • 2. Mackay, D., Shiu, W. & Ma, K. (1993). Illustrated handbook of physical–chemical properties and environmental fate for organic chemicals—volatile organic chemicals, Chelsea, MI: Lewis.
  • 3. Schmidt, T.C., Schirmer, M., Weiss, H. & Haderlein, S. B. (2004). Microbial degradation of methyl tert-butyl ether and tertbutyl alcohol in the subsurface. J. Contam. Hydrol. 70, 173–203.
  • 4. Klinger, J., Stieler, C., Sacher, F. & Branch, H.J. (2004). MTBE (methyl tertiary-butyl ether) in groundwaters: monitoring results from Germany. J. Environ. Monit. 4, 276–279.
  • 5. WHO (2005). Methyl tertiary-Butyl Ether (MTBE) in Drinking- water. Background document for development of WHO Guidelines for Drinking-water Quality. SDE/WSH/05.08/122.
  • 6. Quinlivan, P.A., Li, L. & Knappe, D.R.U. (2005). Effects of activated carbon characteristics on the simultaneous adsorption of aqueous organic micropollutants and natural organic matter. Water Res. 39, 1663–1673. doi:10.1016/j.watres.2005.01.029
  • 7. Malek, N.N. (2007). Surfactant modifi ed zeolite Y as a sorbent for some chromium and arsenic species in water. Faculty of Science. Universiti Teknologi Malaysia.
  • 8. Tashauoei, H., Attar, M.M., Amin, M.M., Kamali, M., Nikaeen, M. & Dastjerdi, M.V. (2010). Removal of cadmium and humic acid from aqueous solutions using surface modifi ed nanozeolite A. Int. J. Environ. Sci. Technol. 7, 497–508.
  • 9. Liu, Z. M., Becker, T. & Neufeld, R.J. (2005). Spherical Alginate Granules Formulated for Quick-Release Active Subtilisin. Biotechnol. Prog. 21, 568–574.
  • 10. Charkhi, A., Kazemian, H. & Kazemeini, M. (2010). Optimized experimental design for natural Clinoptilolite zeolite ball milling to produce nano powders. Powder Technol. 203, 389–396. doi:10.1016/j.powtec.2010.05.034.
  • 11. Kazemeinia, M., Charkhi, A., Kazemian, H. & AHMADI, S.J. (2010). Granulation of nano zeolites utilizing sodium alginate as an external template. Iran International Zeolite Conference 2th IIZC. Tehran.
  • 12. Zhang, P., Tao, X., Li, Z. & Bowman, R.S. (2002). Enhanced perchloroethylene reduction in column systems using surfactant-modifi ed zeolite/zero-valent iron pellets. Environ. Sci. Technol. 36, 3597–3603.
  • 13. Torabian, A., Kazemian, H., Seifi , L., Bidhendi, G.N. & Ghadiri, S.K. (2010). Removal of Petroleum Aromatic Hydrocarbons by Surfactant-Modifi ed Natural Zeolite. CLEAN – Soil, Air, Water, 38, 77–83.
  • 14. Ghadiri, S.K., Nabizade, R., Mahvi, A.H., Kazemian, H., Mesdaghinia, A.R. & Nazmara, S. (2010). Methyl Tert Butyl Ether Adsorption on Surfactant Modifi ed Natural Zeolites. Iran. J. Environ. Health. Sci. Eng. 7, 235–246.
  • 15. Seifi , L., Torabian, A., Kazemian, H., Bidhendi, G.N., Azimi, A.A., Farhadi, F. & Charkhi, A. (2011). Kinetic Study of BTEX Removal Using Granulated Surfactant Modifi ed Natural Zeolites Nanoparticles. Water Air Soil Poll. 219, 443–457 DOI 10.1007/s11270-010-0719-z.
  • 16. Ho, Y.-S. (2006). Isotherms for the Sorption of Lead onto Peat: Comparison of Linear and Non-Linear Methods. Pol. J. Environ. Stud. 15, 81–86.
  • 17. Freundlich, H.M.F. (1906). Uber die adsorption in losungen. J. Phys. Chem. 57, 358–470.
  • 18. Tempkin, M.J. & Pyzhev, V. (1940). Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physicochim, 12, 217–256.
  • 19. Rengaraj, S., Kim, Y., Joo, C.K., Choi, K. & Yi, J. (2004). Batch adsorptive removal of copper ions in aqueous solutions by ion exchange resins: 1200H and IRN97H. Korean J. Chem. Eng. 21, 187–194.
  • 20. Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc. 38, 2221–2295.
  • 21. Acemioglu, B. (2004). Removal of Fe ion from aqueous solution by calabrian pine bark waste. Bioresource Technol. 93, 99–102. doi:10.1016/j.biortech.2003.10.010
  • 22. Hung, H.W. & Lin, T.F. (2006). Adsorption of MTBE from contaminated water by carbonaceous resins and mordenite zeolite. J. Hazard. Mater. 135, 210–217.
  • 23. Perez, N., Sanchez, M., Rincon, M. & Delgado, L. (2007). study of the behavior of metal adsorption in acid solutions on lignin using a comparison of different adsorption isotherms. Latin Am. Appl. Res. 37, 157–162.
  • 24. Nemr, A.E. (2009). Potential of pomegranate husk carbon for Cr(VI) removal from wastewater: Kinetic and isotherm studies. J. Hazard. Mater. 161, 132–141.
  • 25. Oladoja, N.A., Aboluwoye, C.O. & Olademeji, Y.B. (2008). Kinetics and Isotherm studies on Methylene Blue Adsorption onto Ground Palm Kernel Coat. Turkish. J. Eng. Env. Sci. 32, 303–312.
  • 26. Dang, S.V., Kawasaki, J., Abella, L.C., Auresenia, J., Habaki, H., Gaspillo, P.-A.D., Kosuge, H. & Doan, H.T. (2009). Removal of arsenic from simulated groundwater by adsorption using iron-modifi ed rice husk carbon. J. Water Environ. Technol. 7, 43–56.
  • 27. Ho, Y.S., Mckay, G., Wase, D.A.J. & Foster, C.F. (2000). Study of the sorption of divalent metal ions on to peat. Adsorpt. Sci. Technol. 18, 639–650.
  • 28. Fonseca, B., Maio, H., Quintelas, C., Teixeira, A. & Tavares, T. (2009). Retention of Cr(VI) and Pb(II) on a loamy sand soil Kinetics, equilibria and breakthrough. Chem. Eng. J. 152, 212–219. doi:10.1016/j.cej.2009.04.045.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0065-0037
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.