PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estymacja poślizgu dla dużych maszyn indukcyjnych w oparciu o analizę prądu stojana

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Estimating slip of large induction machines by stator current analysis
Języki publikacji
PL
Abstrakty
EN
Many methods exist for detecting defects in induction machines. Most of them require a precise knowledge of the slip of the rotor during machine's operation. It is, therefore, important to be able to determine the slip precisely. This article presents a recently developed algorithm for estimating the rotor slip In large induction machines. The proposed algorithm is based on the analysis of stator current. The main idea is to find the best fit of the spectrum features (peaks) to the operating point of the machine. The output of the algorithm is the estimated slip. The method is verified by numerical calculations as well as actual measurements, which show clearly that the presented metod produces very high quality results. It can, therefore, become an important part of machine monitoring systems. Presented algorithm successfully determines the value of the slip even for large machines with relatively small slip, even in the cases where majority of standard methods do not lead to adequate results.
Rocznik
Tom
Strony
109--114
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
Bibliografia
  • [1]. W. T. Thomson, M. Fenger, “Current signature analysis to detect induction motor faults” IEEE Industry Applications Magazine, Volume 7, Issue 4, Jul/Aug 2001 Page(s):26 – 34.
  • [2]. Long Wu, “Separating Load Torque Oscillation and Rotor Faults in Stator Current Based-Induction Motor Condition Monitoring” Georgia Institute of Technology, May 2007.
  • [3]. A.H. Bonnett, G.C. Soukup, “Analysis of rotor failures in squirrel-cage induction motors” IEEE Transactions on Industry Applications, Volume 24, Issue 6, Nov/Dec 1988 Page(s):1124 – 1130.
  • [4]. A.H. Bonnett, G.C. Soukup, “Cause and analysis of stator and rotor failures in three-phase squirrel-cage induction motors” IEEE Transactions on Industry Applications,Volume 28, Issue 4, Jul/Aug 1992 Page(s):921 – 937.
  • [5]. S. Nandi, S. Ahmed, H. Toliyat, “Detection of Rotor Slot and Other Eccentricity-Related Harmonics in a Three-Phase Induction Motor with Different Rotor Cages” Power Engineering Review, IEEE, Sept. 2001, Volume: 21, Issue: 9 On page(s): 62-62.
  • [6]. P. Vas, “Parameter estimation, conditio monitoring, and diagnosis of electrical machines” Oxford: Calendar Press, 1993.
  • [7]. G. Didier, E. Ternisien, O. Caspary, H. Razik, “Fault Detection of Broken Rotor Bars in Induction Motor using a Global Fault Index”, IEEE Transactions on Industry Applications, Volume 42, Issue 1, Jan.-Feb. 2006 Page(s): 79 – 88.
  • [8]. S.M.A. Cruz, A.J.M. Cardoso, H.A. Toliyat, “Diagnosis of stator, rotor and airgap eccentricity faults in three-phase induction motors based on the multiple reference frames theory” : Industry Applications Conference, Publication Date: 12-16 Oct. 2003 Volume: 2, On page(s): 1340- 1346 vol.2.
  • [9]. D.R. Rankin, “The industrial application of phase current analysis to detect rotor winding faults in squirrel cage induction motors” Power Engineering Journal, Volume 9, Issue 2, Apr 1995 Page(s):77 – 84
  • [10]. A. Bellini, et al, “On-field experience with online diagnosis of large induction motors cage failures using MCSA” Transactions on Industry Applications, Volume 38, Issue: 4, Aug 2002, Page(s) 1045-1053.
  • [11]. K.D. Hurst, T.G. Habetler, “A comparison of spectrum estimation techniques for sensorless speed detection in induction machines” IEEE Transactions on Industry Applications, Volume 33, Issue 4, Jul/Aug 1997 Page(s):898 – 905.
  • [12]. R. M. Bharadwaj, A. G. Parlos, H. A. Toliyat “Neural speed filtering for sensorless induction motor drives” Control Engineering Practice Volume 12, Issue 6, June 2004, Pages 687-706.
  • [13]. Yoon-Ho Kim,Yoon-Sang Kook “Neural network based speed sensorless induction motor drives with Kalman filter approach” Industrial Electronics Society, 1998. Proceedings of the 24th Annual Conference of the IEEE, Volume 2, Issue, 31 Aug-4 Sep 1998 Page(s):997 - 1001 vol.2.
  • [14]. Orman M., Orkisz M., Pinto C. T., “Parameter identification and slip estimation of induction machine”. Elsevier, Mechanical Systems and Signal Processing, DOI: 10.1016/j.ymssp.2010.11.004, 18 Listopad 2010
  • [15]. B. G. Quinn, "Estimating Frequency by Interpolation Using Fourier Coefficients" IEEE Trans. Signal Processing, Volume 42, May 1994, Page(s) 1264-1268.
  • [16]. B. G. Quinn, P. J. Kootsookos, "Threshold Behaviour of the Maximum Likelihood. Network: Comput. Neural Syst. 13 (2002) 447–456
  • [17]. Estimator of Frequency" IEEE Transactions on Signal Processing, Volume 42, 1994 November, Page(s) 3291-3294.
  • [18]. T. Grandke, "Interpolation Algorithms for Discrete Fourier Transforms of Weighted Signals" IEEE Transactions on Instrumentation and Measu- rement, Volume IM-32, June 1983, Page(s) 350-355.
  • [19]. V.K. Jain et al, "High-Accuracy Analog Measurements via Interpolated FFT" IEEE Transactions on Instrumentation and Measurement, Volume IM-28, June 1979, Page(s) 113-122.
  • [20]. D. C. Rife and R. R. Boorstyn, "Single-Tone Parameter Estimation from Discrete-Time Observations" IEEE Transactions on Information Theory, Volume IT-20, September 1974, Page(s) 591-598.
  • [21]. Orman M., Orkisz M., Pinto C. T., “A method for detecting rotor failure in an asynchronous motor” EU Patent application 10460035.8-2216. Sep, 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0065-0018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.