Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study aims to explore the efficiency of an agro waste material for the remediation of Pb(II) contaminated water. A factorial design approach is adopted to optimize removal efficiency and to study the interaction between effective variables. A face-centered Draper-Lin composite design predicted 100% removal efficiency at optimum variables; pH 8, initial concentration of Pb(II) ion 12mg/L, sorbent dose 200mg and agitation time 110 min. Regration coefficient (R2 = 99.9%) of a plot of the predicted versus the observed values and p value (>0.05) confirms the applicability of the predicted model. Langmuir and Dubinin-Radushkevich (D-R) isotherm models were applicable to sorption data with the Langmuir sorption capacity of 21.61š0.78 mg/g. The energy of sorption was found to be 13.62š0.32 kJ/mol expected for ion-exchange or chemisorption nature of sorption process. Characterization of Grewia seed suggested a possible contribution of carboxyl and hydroxyl groups in the process of biosorption. The present study shows that Grewia seeds can be used effectively for the remediation of Pb(II) contaminated water.
Czasopismo
Rocznik
Tom
Strony
71--77
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
autor
autor
- M.A. Kazi Institute of Chemistry University of Sindh, Jamshoro, Pakistan, msaima77@gmail.com
Bibliografia
- 1. Ashtoukhy, E.S.Z.E.L., Amin, N.K. & Abdelwahab, O. (2008). Removal of lead (II) and copper (II) from aqueous solution using pomegranate peel as a new adsorbent. Desalination 223, 62–173. DOI: 10.1016/j.desal.0000.00.000.
- 2. Vandana, S., Stuti, T., Ajit, K.S. & Rashmi, S. (2007). Removal of lead from aqueous solutions using Cassia grandis seed gum-graft-poly(methylmethacrylate). J. Colloid Interf. Sci. 316, 224–232. DOI: 10.1016/j.jcis.2007.07.061.
- 3. Okoye, A.I., Ejikeme, P M. & Onukwuli, O.D. (2010). Lead removal from wastewater using fluted pumpkin seed shell activated carbon: Adsorption modeling and kinetics. Int. J. Environ. Sci. Tech. 7 (4), 793–800. DOI:.
- 4. Davis, T.A., Volesky, B. & Alfonso, M.A. (2003). Review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 37, 4311 4330. DOI: 10.1016/S0043-1354(03)00293-8.
- 5. Chand, R., Narimura, K., Kawakita, H., Ohto, K., Watari, T. & Inoue, K. (2009). Grape waste as a biosorbents for removing Cr(VI) from aqueous solution. J. Hazard. Mater. 163, 245–250. DOI: 10.1016/j.jhazmat.2008.06.084.
- 6. Marta, B. & Ryszard., C.(2011). Utilization of agricultural and industrial wastes for metal removal from aqueous solutions. Polish J. Chem. Technol. 13(1), 20–22. DOI: 10.2478/ v10026-011-0004-y.
- 7. Ho, Y.S. Effect of pH on lead removal from water using tree fern as the sorbent. (2005). Bioresour. Technol. 96, 1292–1296. DOI: 10.1016/j.biortech.2004.10.011.
- 8. Munusamy, T., Lai, Y.L. & Lee, J.F. (2011). Fourier Transform Infrared Spectroscopic Analysis of Fruit Peels before and after the Adsorption of Heavy Metal Ions from Aqueous Solution. J. Chem. Eng. Data. 56, 2249–2255. DOI: 10.1021/je101262w.
- 9. Milan, M., Milovan P., Aleksandar, B., Aleksandra, Z., & Marjan, R. (2011). Removal of lead(II) ions from aqueous solutions by adsorption onto pine cone activated carbon. Desalination 276, 53–59. DOI: 10.1016/j.desal.2011.03.013.
- 10. Blazquez, G., Martín, L.M.A., Tenorio, G. & Calero, M. (2011). Batch biosorption of lead(II) from aqueous solutions by olive tree pruning waste: Equilibrium, kinetics and thermodynamic study. Chem. Eng. J. 168, 170–177. DOI:10.1016/j. cej.2010.12.059.
- 11. Mike, A.A., Joana, P.C.P., Roel, J.W.M. & Piet, N.L.L. (2011). Biosorption of Cu(II) onto agricultural materials from tropical regions. J. Chem. Technol. Biotechnol. 86, 1184–1194. DOI 10.1002/jctb.2630.
- 12. Ana, B.P.M., Maria, I. A., Juan F.O., Victor, F.M., Jose, S. & Mercedes, L.(2010). Biosorption of Zn(II) by orange waste in batch and packed-bed systems. J. Chem. Technol. Biotechnol. 85, 1310–1318. DOI 10.1002/jctb.2432.
- 13. Boudrahem, F., Aissani, B.F. & Soualah, A. (2011). Adsorption of Lead(II) from Aqueous Solution by Using Leaves. J. Chem. Eng. Data 56, 1804–1812. DOI:.org/10.1021/je100770j.
- 14. Tan, I.A.W., Ahmad, A.L, & Hameed, B.H. (2008). Optimization of preparation conditions for activated carbons from coconut husk using response surface methodology. Chem. Eng. J. 137(3), 462–470. DOI: 10.1016/j.cej.2007.04.031.
- 15. Cronje, K.J., Chetty, K.,. Carsky, M.,Sahu, J.N. & Meikap, B.C. (2011). Optimization of chromium(VI) sorption potential using developed activated carbon from sugarcane bagasse with chemical activation by zinc chloride. Desalination 275, 276–284. DOI: 10.1016/j.desal.2011.03.019.
- 16. Javad, Z., Ali, S. & Mohammad, R.S. (2008).Optimization of Pb(II) biosorption by Robinia tree leaves using statistical design of experiments. Talanta 76, 528–532. DOI: 10.1016/j. talanta.2008.03.039.
- 17. Kumar, J. Balomajumder, C. & Mondal, P. (2011). Application of Agro-Based Biomasses for Zinc Removal from Wastewater – A Review. Clean – Soil, Air, Water 39(7), 641–652. DOI: 10.1002/clen.201000100.
- 18. Sanchez, M.J., Beltran, H.J. & Carmona, M.C. (2011). Adsorbents from Schinopsis balansae: Optimization of significant variables. Industrial Crops and Products 33, 409–417. DOI: 10.1016/j.indcrop.2010.10.038.
- 19. Box, G.E.P.& Hunter, W.G. (1987) Statistics for Experiments: An Introduction to Design, Data Analysis and Model Building. Wiley Inter-science.
- 20. Hasan, S.H., Srivastav, P. & Talat, M. (2009). Biosorption of Pb(II) from water using biomass of Aeromonas hydrophila: Central composite design for optimization of proces variables. J. Hazard. Mater. 168, 1155–1162. DOI:10.1016/j. jhazmat.2009.02.142.
- 21. Kim, H.M., Kim, J.G., Cho, J.D. & Hong, J.W. (2003). Optimization and characterization of U.V.-curable adhesives for optical communication by response surface methodology. Polym. Test. 22(8), 899–906. DOI: 10.1016/S0142-9418(03)00038-2.
- 22. Zulkali, M.M.D., Ahmad, A.L. & Norulakmal, N.H. (2006). Oryza, Sativa L. husk as heavy metal adsorbent: Optimization with lead as model solution. Bioresour. Technolo. 97(1), 21-25. DOI: doi:10.1016/j.biortech.2005.02.007.
- 23. Baes, C.F.& Mesmer, R.E. (1976). The Hydrolysis of Cations Wiley-Interscience, New York.
- 24. Mahmut, O., Cengiz, S. & Sengil, I.A. (2006). Studies on synthesis, Characterization, and Metal Adsorption of Mimosa and Valonia Tannin Tesins. J. Appl. Polym. Sci. 102, 786–797. DOI: 10.1002/app.23944.
- 25. Mahmut, O., Sengil, I.A. & Harun, T. (2008). Equilibrium and kinetic data, and adsorption mechanism for adsorption of lead onto valonia tannin resin. Chem. Eng. J. 143, 32–42. DOI: 10.1016/j.cej.2007.12.005.
- 26. Socrates, G. (1980). Infrared characteristic group frequencies. Wiley-Inter-science.
- 27. Memon, S.Q., Hasany, S.M., Bhanger, M.I.& Khuhawar, M.Y. (2005). Enrichment of Pb(II) ions using phthalic acid functionalized XAD-16 resin as a sorbent. J. Colloid Interf. Sci. 291, 84–91. DOI: 10.1016/j.jcis.2005.04.112.
- 28. Helfferich, F. (1962). Ion Exchange. McGraw–Hill, New York.
- 29. Saeed, M.M. (2003). Adsorption profile and thermodynamic parameters of the preconcentration of Eu(III) on 2-thenoyltrifl uoroacetone loaded polyurethane (PUR) foam. J. Radioanal. Nucl. Chem. 256(1), 73–80. DOI: 0236–5731/2003/USD 20.00
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0064-0045