PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stimuli responsive polymeric nanoparticles in regulated drug delivery for cancer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Stimuli-responsive drug delivery system is a concept in which a drug is delivered at a suitable rate in response to stimuli. States of diseases may cause an alteration in some parameters of the body (e.g. in tumors) and the onset and offset of the drug delivery can be done by using this as a stimuli or a "trigger". Stimuli-responsive ("intellectual" or "sharp") resources and molecules show abrupt property changes in response to miniature changes in external stimuli such as pH, temperature etc. For regulated drug delivery, environmental stimuli such as pH and temperature, which undertake phase transition in polymer system, have been investigated. Thermally-responsive polymers can be tuned to a preferred temperature variety by copolymerization with a hydrophilic co-monomer or a hydrophobic co-monomer. Hydrophilic co-monomers increase the LCST while hydrophobic co-monomers decrease the LCST. The stimuli responsive polymer for regulated drug delivery can contain a polymer and copolymers having equilibrium of hydrophilic and hydrophobic groups. A number of these polymers have been investigated extensively and some success in drug delivery with them has been achieved, such as polymers and copolymers of N-isopropylacrylamide, PLGA, and PLA, HEMA etc. Thus this review is designed for stimuli pH and temperature responsive polymeric nanoparticles, which would be helpful to treat various cronic diseases such as cancer and others, for scientists in the field of the regulated drug delivery system.
Rocznik
Strony
57--64
Opis fizyczny
Bibliogr. 82 poz., rys., tab.
Twórcy
autor
autor
autor
autor
autor
autor
  • Banasthali University, Department of Bioscience and Biotechnology, Rajasthan-304022, India, deepaknano@gmail.com
Bibliografia
  • 1. Johnson, B.F.G. (2003). Topics in Catalysis, Chem.& Mater. Sci. 24(1–4), 147–159. DOI: 10.1023/B:TOCA. 0000003086.83434.b6.
  • 2. Khanna, V.K. (2008). Nanoparticle-based Sensors, Defence Sci. J. 58(5), 608–616.
  • 3. Hoshino, A., Fujioka, K. & Oku, T. (2004). Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett. 4(11), 2163–2169. DOI: 10.1021/nl048715d.
  • 4. Torchilin, V. P. (2001). Structure and design of polymeric surfactant-based drug delivery systems, J Cont. Rel. 73(2–3), 137–172. DOI:10.1016/S0168-3659(01)00299-1.
  • 5. Connor, E. E., Mwamuka, J., Gole, A., Murphy, C.J. & Wyatt, M.D. (2005). Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 1(3), 325–327. DOI: 10.1002/smll.200400093.
  • 6. Wu, X.Y. & Lee, P.I. (1993). Preparation and characterization of thermal and pH sensitive nanospheres. Pharm. Res. 10(10), 1544–1547. DOI: 10.1023/A:1018900114881.
  • 7. Huang, M., Khor, E. & Lim, L.Y. (2004). Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylation. Pharm Res. 21:344–353. DOI: 10.1023/B:PHAM.0000016249.52831.a5.
  • 8. Kabanov, A. V. & Alakhov, V. Y. (2002). Pluronic block copolymers in drug delivery: From micellar nanocontainers to biological response modifiers. Crit. Rev. Ther. Drug Carrier Syst. 19(1), 1–72.
  • 9. Chavanpatil, M.D., Patil, Y. & Panyam, J. (2006). Susceptibility of nanoparticle-encapsulated paclitaxel to p-glycoprotein- mediated drug efflux. Int. J. Pharm. 320, 150–156. DOI:10.1016/j.ijpharm.2006.03.045.
  • 10. Pettit, D.K. & Gombotz, W.R. (1998). The development of site-specific drug-delivery systems for protein and peptide biopharmaceuticals, Trends in Biotech. 16(8), 343–349. DOI:10.1016/S0167-7799(98)01186-X.
  • 11. Bellocq, N.C., Pun, S.H., Jensen, G.S. & Davis, M.E. (2003). Transferrin-containing, cyclodextrin polymer-based particles for tumor-targeted gene delivery. Bioconjug. Chem. 14(6), 1122–1132. DOI: 10.1021/bc034125f.
  • 12. Feng, S.S. (2004). Nanoparticles of biodegradable polymers for new-concept chemotherapy, Expert Rev. Med. Dev. 1(1), 115–125. DOI:10.1586/17434440.1.1.115.
  • 13. Qiao, W., Wang, B., Wang, Y., Yang, L., Zhang, Y. & Shao, P. (2010). Cancer Therapy Based on Nanomaterials and Nanocarrier Systems, J. Nanomater. Article ID 796303, 9. DOI:10.1155/2010/796303.
  • 14. Sona, P.S. (2010). Nanoparticulate Drug Delivery Systems for the Treatment of Diabetes, Digest J. Nanomater. & Biostruc. 5(2), 411–418.
  • 15. Vlerken, L.E.V. & Amiji, M.M. (2006). Multi-functional polymeric nanoparticles for tumor-targeted drug delivery. Expert Opi. Drug Deliv. 3(2), 205–16. DOI:10.1517/17425247.3.2.205.
  • 16. Avgoustakis, K. (2004). Pegylated poly (lactide) and poly (lactide-co-glycolide) nanoparticles: preparation, properties and possible application in drug delivery, Curr. Drug Deliv. 1(4), 321–333. DOI: 10.2174/1567201043334605.
  • 17. Yam, F., Wu, X. Y. & Zhang, Q. (2000). A novel composite membrane for temperature and pH responsive permeation, in: Controlled Drug Delivery: Designing Technology for the Future (263–272). Ed K. Park, ACS, Washington, DC.
  • 18. Senior, J. & Gregoriadis, G. (1982). Is half-life of circulating small unilamellar liposomes determined by changes in their permeability? FEBS Lett. 145(1), 109–114. DOI. org/10.1016/0014-5793(82)81216-7.
  • 19. Shenoy, D., Fu, W., Li, J., Crasto, C., Jones, G., Dimarzio, C., Sridhar, S. & Amiji, M. (2006). Surface functionalization of gold nanoparticles using hetero-bifunctional poly (ethylene glycol) spacer for intracellular tracking and delivery, Int J Nanomed. 1(1), 51–57. DOI: 10.2147/nano.2006.1.1.51.
  • 20. Edward, T. & Yeop, S.J. (2002). U.S. Patent No. 20,070,190,160. Washington, D.C.: U.S. Patent and Trademark Office.
  • 21. Yin, H., Lee, E. S., Kim, D., Lee, K.H., Oh, K.T. & Bae, Y.H. (2008). Physicochemical characteristics of pH-sensitive poly (L-Histidine)-b-poly (ethylene glycol) / poly (L-lactic acid)-b-poly (ethylene glycol) mixed micelles, J. Control. Rel. 126(2), 130–138. DOI:10.1016/j.jconrel.2007.11.014.
  • 22. Yoshida, R., Kaneko, Y., Sakai, K., Okano, T., Sakurai, Y., Bae, Y.H. & Kim, S.W. (1994). Positive thermosensitive pulsatile drug release using negative thermosensitive hydrogels, J. Contro. Rel. 32(1), 97–102. DOI:10.1016/0168-3659(94)90229-1.
  • 23. Seymour, L.W., Duncan, R., Strohalm, J. & Kopecek, J. (1987). Effect of molecular weight (MW) of N-(2-hydroxypropyl) methacrylamide copolymers on body distribution and rate of excretion after subcutaneous, intraperitoneal, and intravenous administration to rats, J. Biomed. Mater. Res. 21(11), 1341–1358. DOI: 10.1002/jbm.820211106.
  • 24. Shefer, S. & Shefer, A. (2004). U.S. Patent No. 20,040,062,778. Washington, D.C.: U.S. Patent and Trademark Office.
  • 25. Yang, T.H. (2008). Recent Applications of Polyacrylamide as Biomaterials, Rec. Pat. Mater. Sci. 1(1), 29–40. DOI: 10.2174/1874465610801010029.
  • 26. Yong, L.I.Y., Qing, D.H., Kang, W., DongLu, S.H.I., Zheng, Z. X. & Xi, Z. R. (2010). Stimulus-responsive polymeric Nanoparticles for biomedical applications, Sci. China Chem. 53(3), 447–457. DOI: 10.1007/s11426-010-0101-4.
  • 27. Song, M., Guo, D., Pan, C., Jiang, H., Chen, C., Zhang, R., Gu, Z. & Wang, X. (2008). The application of poly(N-isopropylacrylamide)- co-polystyrene nanofibers as an additive agent to facilitate the cellular uptake of an anticancer drug, Nanotechno. 19(16), 165102. DOI: 10.1088/0957-4484/19/16/165102.
  • 28. Bromberg, L., Temchenko, M. & Hatton, T.A. (2002). Dually Responsive Microgels from Polyether-Modified Poly (acrylic acid): Swelling and Drug Loading, Langmuir. 18(12), 4944–4952. DOI: 10.1021/la011868l.
  • 29. Izumi, S. & Kunihiko, T. (1985). U. S. Patent No. 4,536,387. Washington, D.C.: U.S. Patent and Trademark Office.
  • 30. Youwei, Z. & Ming, J. (2006). New approaches to stimuli- responsive polymeric micelles and hollow spheres, Front. Chem. China. 1(5), 364–368. DOI: 10.1007/s11458-006-0049-2.
  • 31. Grodzinski, J.J. (1999). Biomedical application of functional polymers, React. & Funct. Poly. 39, 99–138.
  • 32. Sung, Y.K. & Kim, S.W. (2000). Advances in biodegradable polymers for drug delivery systems, Korean Poly. J. 8(5), 199–208.
  • 33. Knoop, R.J.I., Geus, M.D., Habraken, G.J.M., Koning, C.M., Menzel, H. & Heise, A. (2010). Stimuli Responsive Peptide Conjugated Polymer Nanoparticles, Macromol. 43(9), 4126–4132. DOI: 10.1021/ma100327p.
  • 34. Wei, H., Zhang, X. Z., Zhou, Y., Cheng, S. X. & Zhuo, R. X. (2006). Self-assembled thermoresponsive micelles of poly(N-isopropylacrylamide-b-methyl methacrylate), Biomater. 27(9), 2028–2034. DOI:10.1016/j.biomaterials.2005.09.028.
  • 35. Yu, W.X. & Frank, Y. (2003). U. S. Patent No. 6565,872. Washington, D.C.: U.S. Patent and Trademark Office.
  • 36. Wang, J., Cheng, Y. & Xu, T. (2008). Current Patents of Dendrimers and Hyperbranched Polymers in Membranes, Recent Pat. Chem. Enginee. 1(1), 41–51.
  • 37. Erathodiyil, N., Reddy, G.R. & Ham, Y. (2007). U. S. Patent No. 20,070,009,441. Washington, D.C.: U.S. Patent and Trademark Office.
  • 38. Lyer, A.K., Khaled, G., Fang, J & Maeda, H. (2006). Exploiting the enhanced permeability and retention effect for tumor targeting, Drug Discov. Today. 11(17–18), 812–818. DOI:10.1016/j.drudis.2006.07.005.
  • 39. Chang, J.S., Chang, K.L.B., Hwang, D.F. & Kong, Z. L. (2007). In vitro cytotoxicity of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line, Environ. Sci. Technol. 41(6), 2064–2068. DOI: 10.1021/es062347t.
  • 40. Linhardt, J.G., Raiche, A.T. & Salmone, C. (2009). U. S. Patent No. 20,090,117,189. Washington, D.C.: U.S. Patent and Trademark Office.
  • 41. Zhang, G., Desnoyer J.R., Stewart, G., Kezis, M. & Hossainy, S.F.A. (2008). U.S. Patent No. 20,080,057,024. Washington, D.C.: U.S. Patent and Trademark Office.
  • 42. West, J.L., Sershen, S,R. & Halas, N.J. (2002). U. S. Patent No. 6,428,811. Washington, D.C.: U.S. Patent and Trademark Office.
  • 43. Rapoport, N. (2007). Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery, Prog. Poly. Sci. 32(8–9), 962–990. DOI:10.1016/j.progpolymsci.2007.05.009.
  • 44. Hatefi , A. & Amsden, B. (2002). Biodegradable inject able in situ forming drug delivery systems, J Control. Rel. 80(1–3), 9–28. DOI:10.1016/S0168-3659(02)00008-1.
  • 45. Yin, H., Lee, E.S., Kim, D., Lee, K.H., Oh, K.T. & Bae, Y.H. (2008). Physicochemical characteristics of pH-sensitive poly (l-Histidine)-b-poly (ethylene glycol)/poly (l-Lactide)-b-poly (ethylene glycol) mixed micelles, J. Control. Rel. 126(2), 130–138. DOI:10.1016/j.jconrel.2007.11.014.
  • 46. Ichikawa, H. & Fukumori, Y. (2000). A novel positively thermosensitive controlled release microcapsule with membranę of nano-sized poly (N-isopropylacrylamie) gel ispesed in ethylcellulose matrix, J. Control. Rel. 63(1–2), 107–119.
  • 47. Donald, O., Peppas, E. & Nicholas, A. (2008). U.S. Patent No. 20,080,138,430. Washington, D.C.: U.S. Patent and Trademark Office.
  • 48. Park, Y.S., Ito, Y. & Imanishi, Y. (1998). Permeation control through porous membranes immobilized with thermosensitive polymer, Langmuir. 14(4), 910–914. DOI: 10.1021/ la970866r.
  • 49. Mitra, S., Gaur, U., Ghosh, P.C. & Maitra, A.N. (2001). Tumour Targeted Delivery of Encapsulated Dextran-Doxorubicin Conjugate Using Chitosan Nanoparticles as Carrier. J. Control. Rel. 74(1–6), 317–323. DOI: 10.1016/S0168-3659(01)00342-X.
  • 50. Chen, H.C. & Chatterjee, Y. (2006). U. S. Patent No. 7,081,489. Washington, D.C.: U.S. Patent and Trademark Office.
  • 51. Singer, J. W., Baker, B., De Vries, P., Kumar, A., Shaffer, S., Vawter, E., Bolton, M. & Garzone, P. (2003). Poly-(L)-glutamic acid-paclitaxel (CT-2103) [XYOTAX (TM)], a biodegradable polymeric drug conjugate—Characterization, preclinical pharmacology, and preliminary clinical data, Adv. Exp. Med. Biol. 519, 81–99. DOI: 10.1007/0-306 47932-X_6.
  • 52. Zhao, M., Zabelina, Y., Rudek, M.A., Wolff, A.C. & Baker, S.D. (2003). A rapid and sensitive method for determination of dimethyl benzoylphenyl urea in human plasma by using LC/MS/MS, J. Pharmaceu. & Biomed. Anal. 33(4), 725–733. DOI:10.1016/S0731-7085(03)00424-2.
  • 53. Sung & Hsing-Wen. (2006). U. S. Patent No. 20,060,115,537. Washington, D.C.: U.S. Patent and Trademark Office.
  • 54. Na, K., Lee, K.H., Lee, D.H. & Bae, Y.H. (2006). Biodegradable thermo-sensitive nanoparticles from poly(L-lactic acid)/poly(ethylene glycol) alternating multi-block copolymer for potential anti-cancer drug carrier, Eur. J. Pharm. Sci. 27(2–3), 115–122. DOI:10.1016/j.ejps.2005.08.012.
  • 55. Stayton, P.S., Hoffman, S.S. & Xiangchun, Y. (2001). U.S. Patent No. 20,070,224,241. Washington, D.C.: U.S. Patent and Trademark Office.
  • 56. Chen, D., Jiang, M. & Huisheng, P. (2007). U. S. Patent No. 7,166,306. Washington, D.C.: U.S. Patent and Trademark Office.
  • 57. Des Rieux, A., Fievez, V., Garinot, M., Schneider, Y.J. & Preat, V. (2006). Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach, J. Control. Rel. 116(1), 1–27. DOI:10.1016/j.jconrel.2006.08.013.
  • 58. Ko, J., Park, K., Kim, Y.S., Kim, M.S., Han, J.K., Kim, K., Park, R.W., Kim, I.S., Song, H.K. & Lee, D.S. (2007). Kwon IC. Tumoral acidic extracellular pH targeting of pH-responsive MPEG-poly (beta-amino ester) block copolymer micelles for cancer therapy, J. Control. Rel. 123(2), 109–115. DOI:10.1016/j. jconrel.2007.07.012.
  • 59. Wright, D.C. (1998). U.S. Patent No. 5,795,582. Washington, D.C.: U.S. Patent and Trademark Office.
  • 60. Dunn, R.L., Garrett, J.S. & Ravivarapu, H. (2004). U.S. Patent No. 6,773,714. Washington, D.C.: U.S. Patent and Trademark Office.
  • 61. Harada, M., Sakakibara, H., Yano, T., Suzuki, T. & Okuno, S. (2000). Determinants for the Drug Release from T-0128, Camptothecin Analogue-Carboxymethyl Dextran Conjugate, J. Control. Rel. 69(3), 399–412. DOI:10.1016/S0168- 3659(00)00321-7.
  • 62. Chen, D. Jiang, M. Peng. & Huisheng. (2007). U.S. Patent No. 7,166,306. Washington, D.C.: U.S. Patent and Trademark Office.
  • 63. Ulbrich, K. & Subr, V. (2004). Polymeric anticancer drugs with pH-controlled activation, Adv. Drug Deliv. Rev. 56(7), 1023–1050. DOI:10.1016/j.addr.2003.10.040.
  • 64. Kramer, M., Stumbe, J.F., Turk, H., Krause, S., Komp, A., Delineau, L., Prokhorova, S., Kautz, H. & Haag, R. (2002). pH-responsive molecular nanocarriers based on dendritic coreshell architectures, Angew. Chem. Int. Ed. 41(22), 4252–4256. DOI: 10.1002/1521-3773(20021115.
  • 65. Lee, E.S., Na, K. & Bae, Y.H. (2005). Super pH-sensitive multifunctional polymeric micelle, Nano Lett. 5(2), 325–329. DOI: 10.1021/nl0479987.
  • 66. Little, S.R., Lynn, D.M. & Anderson, D.G. (2005). U.S. Patent No. 20,050,245,049. Washington, D.C.: U.S. Patent and Trademark Office.
  • 67. Kim, J.J. & Park, K. (2001). Modulated insulin delivery from glucose-sensitive hydrogel dosage forms, J. Control. Rel. 77(1–2), 39–47. DOI:10.1016/S0168-3659(01)00447-3.
  • 68. Lavasanifar, A., Samuel, J. & Kwon, G.S. (2002). Poly (ethylene oxide)-block-poly (L-amino acid) micelles for drug delivery, Adv. Drug Deliv. Rev. 54(2), 169–190. DOI:10.1016/ S0169-409X(02)00015-7.
  • 69. Lee, I. & Srivastava, D. (2008). U.S. Patent No. 20,080,176,074. Washington, D.C.: U.S. Patent and Trademark Office.
  • 70. Chen, Mei-chin, T. & Hos1heng. (2008). U.S. Patent No. 20,080,160,078. Washington, D.C.: U.S. Patent and Trademark Office.
  • 71. Hubbell, J.H., Pathak, C. P. and Sawhney, A. S. (1999). U. S. Patent No. 5,986,043. Washington, D.C.: U.S. Patent and Trademark Office.
  • 72. Petereit, Hans-ulrich, & Meier. (2005). U.S. Patent No. 20,050,154,165. Washington, D.C.: U.S. Patent and Trademark Office.
  • 73. Monahan, S.D., Wolff, J.A. and Hagstrom, J.E. (2007). U.S. Patent No. 7,208,314. Washington, D.C.: U.S. Patent and Trademark Office.
  • 74. Ohya, Y., Oue, H., Nagatomi, K. & Ouchi, T. (2001). Design of Macromolecular Prodrug of Cisplatin Using Dextran with Branched Galactose Units as Targeting Moieties to Hepatoma Cells, Biomacro, 2(3), 927–933. DOI: http://dx.doi.org/10.1021/bm010053o.
  • 75. Pendri, A., Conover, C.D. & Greenwald, R.B. (1998). Antitumor activity of paclitaxel-2-glycinate conjugated to poly( ethylene glycol): a water-soluble prodrug, Anticancer Drug Des. 13(5), 387–395.
  • 76. Rathi, R.C., Zentner, G.M. and Jeong, B. (2000). U.S. Patent No. 20,006,117,949. Washington, D.C.: U.S. Patent and Trademark Office.
  • 77. Heffernan, M.J. & Murthy, N. (2005). Polyketal nanoparticles: A new pH-sensitive biodegradable drug delivery vehicle, Bioconjug. Chem. 16(6), 1340–1342. DOI: 10.1021/bc050176w.
  • 78. Sharma, P.C. (2009). U. S. Patent No. 20,090,098,205. Washington, D.C.: U.S. Patent and Trademark Office.
  • 79. Tomlinson, R., Klee, M., Garrett, S., Heller, S., Duncan, R. & Brocchini, S. (2002). Pendent chain functionalized polyacetals that display pH-dependent degradation: A platform for the development of novel polymer therapeutics, Macromole. 35(2), 473–480. DOI: 10.1021/ma0108867.
  • 80. Chen, C.J., Haik, Y. & Chatterjee, J. (2006). U. S. Patent No. 7,081,489. Washington, D.C.: U.S. Patent and Trademark Office.
  • 81. Wenzel, J.G.W., Balaji, K.S.S., Koushik, K., Navarre, C., Duran, S.H., Rahe, C.H. & Kompella, U.B. (2002). Pluronic F127 gelformulations of deslorelin and GnRH reduce drug degradation and sustain drug release and effect in cattle. J. Control. Rel. 85, 51–59. DOI:10.1016/S0168-3659(02)00271-7.
  • 82. Bae, Y.H., Na, K. & Lee (2005). U.S. Patent No. 20,050,186,263. Washington, D.C.: U.S. Patent and Trademark Office.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0064-0043
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.