PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removal of SO2 from gases on carbon materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the work is to describe a capability of the active carbon CARBON L-2-4 (AC) and of the nanocarbon (NC) materials containing iron nanoparticles to continuously remove SO2 from air. The carbon nanomaterials (NC) containing iron nanoparticles were synthesised using a chemical vapor deposition method - through catalytic decomposition of ethylene on nanocrystalline iron. The process of SO2 removal was carried out on dry and wet with water carbon catalyst (AC or NC) and was studied for inlet SO2 concentration 0.3 vol.% in the presence of O2, N2 and H2O, in the temperature range of 40-80°C.
Rocznik
Strony
41--45
Opis fizyczny
Bibliogr. 10 poz., rys., tab.
Twórcy
autor
autor
autor
  • Institute of Chemical and Environmental Engineering, West Pomeranian University of Technology Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland, urszula.narkiewicz@zut.edu.pl
Bibliografia
  • 1. Raymundo-Pinero, E., Cazorla-Amoro´s, D., Salinas-Martinez de Lecea, C. & Linares-Solano, A. (2000). Factors controlling the SO2 removal by porous carbons: – relevanceof the SO2 oxidation step. Carbon 38, 335–344. DOI:10.1016/S0008-6223(99)00109-8.
  • 2. Lizzio, A.A. & DeBarr, J.A. (1996). Effect of surfacearea and chemisorbed oxygen on the SO2 adsorption capacity of activated char. Fuel 75, 1515–1522. DOI:10.1016/0016-2361(96)00127-5.
  • 3. Martin, C., Perrard, A., Joly, J.P., Gaillard, F. & Delecroix,V. (2002). Dynamic adsorption on activated carbons of SO2 traces in air I. Adsorption capacities. Carbon 40, 2235–2246. DOI:10.1016/S0008-6223(02)00108-2.
  • 4. Bandosz, T.J. (2006). Carbonaceous materials as desulfurization media, Combined and Hybrid Adsorbents. NATO Security through Science Series 145–164. DOI: 10.1007/1-4020-5172-7_16.
  • 5. Gaur, V., Asthana, R. & Verman, N. (2006). Removal of SO2 by activated carbon fibers in the presence of O2 and H2O. Carbon 44, 46 60. DOI:10.1016/j.carbon.2005.07.012.
  • 6. Daley, M.A., Mangun, C.L., DeBarr, J.A., Riha, S., Lizzio, A.A., Donnals, G.L. & Economy, J. (1997). Adsorption of SO2 onto oxidized and heattreated activated carbon fibers (ACFS). Carbon 35, 411–417. DOI:10.1016/S0008-6223(97)89612-1.
  • 7. Narkiewicz, U. (2005). Technology of the nanocarbon materials preparation. Pol. J. Chem. Tech. 7, 87–94.
  • 8. Narkiewicz, U., Pełech, I., Rosłaniec, Z., Kwiatkowska, M. & Arabczyk, W. (2007). Preparation of nanocrystalline iron–carbon materials as fillers for polymers. Nanotechnology 18, 5601–5605. DOI: 10.1088/0957-4484/18/40/405601.
  • 9. Pełech, I. & Narkiewicz, U. (2009). The Kinetics of Ethylene Decomposition on Iron Catalyst. Acta Phys. Pol. A 116, 146–149.
  • 10. Narkiewicz, U., Pełech, I., Arabczyk, W., Biedermann, K. & Tueschner, Ch. (2008). Catalytic decomposition of ethylene – the effect of process conditions on the yield and morphology of nanocarbon products. Pol. J. Chem. 82, 1743–1752.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0064-0040
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.