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ABSTRACT            A numerical model which is an example of local-
regional RF hyperthermia is presented. Human body is surrounded by 
an elliptical wire with exciting current and the electromagnetic energy  
is concentrated within the tumor. The presented issue is therefore  
a coupling of the electromagnetic field and the temperature field.  
For simplification a two-dimensional model which is a cross section 
through the human body is adopted. Using the finite element method 
exciting current density in human body has been calculated, and then 
bioheat equation under transient-time condition has been resolved. 
Finally, the obtained simulation results for several wire configurations 
are presented. 
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1. INTRODUCTION 
 

Hyperthermia is one of the ways of treating malignant tumors, in which 
cancerous pathological tissues are exposed to a high temperature. Clinical trials 
have shown that heating the tumor to temperatures 40-44°C can lead to 
damage or completely destruction of cancer cells, simultaneously minimally  
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affecting normal tissues surrounding the tumor. There is also evidence that the 
effectiveness of hyperthermia is significantly increased in combination with 
other cancer treatments like radio- or chemotherapy [1, 2].  
 Apparently, an extremely important issue is to control the temperature 
distribution in the treated area to avoid excessive temperature increase in the 
normal tissues surrounding the tumor [3]. There are many studies on the 
treatment of cancer using hyperthermia which demonstrates that this aspect is 
still important and more research is needed in this matter [5, 6]. 
 
 
 
 
2. GOVERNING EQUATIONS 
 

Let us consider a cross section of the human body as shown in Figure 1. 
The human body is approximated to an ellipse whose semi-axes are res-
pectively a = 20 cm and b = 12 cm. Inside the body there is a tumor with the 
radius of r = 2.5 cm. An elliptical wire with the semi-axes A = 50 cm and B = var 
is placed around the human body. Through the wire an alternating current flows 
in clock-wise direction with the amplitude Im = 16 A and frequency f = 100 MHz. 
The exciting current generates a sinusoidal electromagnetic field, which next 
induces eddy currents in human body. Eddy currents are a source of heat and 
after transient time a temperature distribution in human body is established. 
Therefore, in the analyzed model, we deal with the electromagnetic field coup-
led with the field temperature. Moreover, the human body and the tumor are 
treated as homogeneous media with averaging material parameters. 
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Fig. 1. Schematic view of the human body surrounded by wire with exciting current (a) 
and cross section of the human body with a tumor inside surrounded by excitation 
wire together with geometrical dimensions (b) 
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Let us start with Maxwell’s equations in the time domain: 
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where E and H are respectively the electric and magnetic field strengths, Ji is 
an impressed current density, which is treated as a source of electromagnetic 
field, Jc is conduction current resulting from the existence of an electric field 
according to Ohm's law 

c σ=J E               (3) 

Moreover, σ is the electrical conductivity of the body, D and B are respectively 
the vectors of electric displacement density and magnetic induction given in the 
form of material dependences 

ε=D E ,  μ=B H            (4) 

where ε and μ are respectively the permittivity and magnetic permeability of the 
medium. 

After the introduction of the magnetic vector potential A in the expression 
of magnetic induction vector  

 = ∇×B A               (5) 

we can derive the following equation describing the field distribution: 
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Since the magnetic vector potential (as well as other vectors) in the time domain 
is related with complex amplitude ˆ ( )A r  by 

ˆ( , ) Re ( ) j tt e ω⎡ ⎤= ⎣ ⎦A r A r             (7) 

where ω is the pulsation of electromagnetic field. Therefore the equation (6) in 
the complex domain is given by 
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where ε̂  is the complex permittivity defined as 

( )ˆ jε ω ε ε′ ′′= −              (9) 

where ε ′  is the real part of the permittivity, which is related to the stored energy 
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within the medium and ε ′′  is a dielectric loss factor (it is the imaginary part of 
the permittivity, which is related to the dissipation (or loss) of energy within the 
medium). For one Debye’s process [4] we can assume that 
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         (10) 

where 
ε∞  – the high-frequency limit of relative permittivity, 

1εΔ  – the relaxation intensity, 

1α  – the Cole–Cole parameter, 

1τ  – the relaxation time [s], 

1σ  – the electric conductivity [S/m], 

0ε  – the permittivity of free space. 

Solution of quasi-stationary equation (8) requires the determination of the boun-
dary condition for the magnetic vector potential A. In the presented simulation 
assumes a zero value of potential on the boundary of calculation area, located 
at some, but finite distance from the analyzed object. 
 The second basic equation used in the presented simulation is the so-
called bioheat equation given by Pennes [7]. It describes the phenomenon of 
transport and heat transfer in biological tissues. In transient analysis the bioheat 
equation is expressed by 

( ) ( )b b b b ext met
TC k T C T T Q Q
t

ρ ρ ω∂
+∇ − ∇ = − + +

∂
       (11) 

where 
T – the body temperature [K], 
Tb – the blood vessel temperature [K],  
K – the tissue thermal conductivity [W/(m·K)],  
ρ – the tissue density [kg/m3],  
ρb – the blood density [kg/m3],  
C – the tissue thermal conductivity [J/(kg·K)],  
Cb – the blood specific heat [J/(kg·K)],  
ωb – the blood perfusion rate [1/s], 
Qmet – the metabolic heat generation rate [W/m3], 
Qext – the external heat sources [W/m3]. 

The external heat sources is responsible for the changing of the temperature 
inside the exposed body according to the following equation 

2*1
2extQ σ σ= ⋅ =E E E           (12) 
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The bioheat equation allows us to assess both the transient response 
and the steady-state of temperature changes in the human body. Since this is  
a differential equation in time and space its solution requires to specify both the 
initial and boundary conditions to be specified. The initial condition is equal to 

0 37T T C= =             (13) 

which corresponds to the physiological temperature of the human body. The 
boundary condition explains heat exchange between the surface of the body 
and the external environment according to the equation given by 

( ) ( )airk T h T T⋅ − ∇ = −n           (14) 

where 
h – the heat transfer coefficient [W/(m2·K)], 
Tair – the temperature of the air surrounding the body [K], 
n – the unit vector normal to the surface. 

It is worth noting that the term on the right side of above equation describes the 
heat losses due to convection, therefore a constant h is also named as the 
convection coefficient. 
 
 
 
3. SIMULATION RESULTS 
 

In the analyzed model, the human body and tumor are considered as 
homogeneous media with averaged material parameters, therefore the simu-
lation results may differ from those obtained in reality during hyperthermia treat-
ment. The physical parameters of the model are given in Tables 1-3. As men-
tioned before a sinusoidal alternating current in wire with an amplitude Im = 16 A 
and a frequency f = 100 MHz is the input function. In addition, heat transfer 
coefficient was assumed equal to h = 10 [W/(m2·K)], and the temperature of the 
air surrounding the human body equal to Tair = 293.15 [K], which corresponds  
to room temperature of 20°C. 
 
 

TABLE 1  
Electrical parameters of tissues used in the numerical model [4] 

Tissue ε∞ ∆ε1 τ1 [ps] α1 σ1 [S/m] 
human body 4.0 50 7.23 0.10 0.15 
tumor 2.5 18 13.2 0.22 0.07 



138 P. Gas 

TABLE 2 
Other physical parameters of tissues used in the simulation 

Tissue k [W/(m K)] ρ [kg/m3] C [J/(kg K)] Qmet [W/m3] 

human body 0,22 1050 3700 300 
tumor 0,56 1050 3700 480 

 
 

TABLE 3 
Physical parameters of blood taken in the bioheat equation 

Tissue Tb [K] ρb [kg/m3] Cb [J/(kg K)] ωb [1/s] 

blood 310,15 1020 3640 
in human body  0,005 
in tumor             0,0004 

 
 
Equations (8) and (11) with appropriate initial and boundary conditions were sol-
ved using the finite element method. The simulation results are summarized in 
Figures 2-7. Figure 2 shows the equipotential lines of the module of the mag-
netic vector potential A for optimal value of semi-axis B of the excitation wire. 
This vector lies in x-y plane and its maximum value is close to the wire with the 
exciting current. On the boundary of calculation area value of magnetic vector 
potential is equal to zero. 
 

 
Fig. 2. Equipotential lines of the modulus of magnetic vector potential for B = 0.5 m 

 
Equipotential lines of the vector current density J induced in the human body are 
presented in Figure 3. As expected, the highest value occurs within the tumor. 
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Fig. 3. Equipotential lines of 
current density induced in the 
human body for B = 0.5 m 

 
 
 
 
 
 
 
 

 
The rest drawings illustrate the temperature dependence within the hu-

man body in different form. Figure 4 represents the distribution of isotherms in 
the analyzed model for the steady state after a time of t = 6000 [s]. 
 

 
 
 
 
 
 
 
 

Fig. 4. Isotherms in the human 
body for the steady state analy-
sis (B = 0.5 m) 

 
 
 
 
 
 
 
 

 
Temperature distribution along horizontal and vertical symmetry axes of 

the human body for different values of semi-axis B of the excitation wire are 
presented in Figures 5 and 6. Increasing the value of B causes the temperature 
inside the tumor to rise under the same conditions but only to reach the limit 
value of B = 0.7 m. The greatest value of the temperature is inside the tumor but 
there are possible local maxima of temperature near the surface of the body. In 
order to avoid surface burns the human body would be surrounded with cold 
water bolus. 
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Fig. 5. Temperature distribution along horizontal symmetry 
axis of the human body for different values of semi-axis 
of excitation wire B [m] in steady-state 
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Fig. 6. Temperature distribution along vertical symmetry 
axis of the human body for different values of semi-axis  
of excitation wire B [m] in steady-state 

 
Last Figure 7 shows the time dependence of the temperature inside the 

tumor for different values of semi-axis B of the excitation wire. As we can see, 
this dependence is characterized by a very long time constant, which causes 
the temperature inside the tumor can be set up for several minutes. Moreover, 
after reaching the limit value of B = 0.7 m the temperature inside the tumor 
decreases to about 37.4°C. 
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Fig. 7. Time dependence of the temperature in the centre  
of the tumor for several values of semi-axis of excitation 
wire B [m] 

 
 
 
4. SUMMARY 
 

Local-regional RF hyperthermia is an effective way of heating malignant 
tumors. Positive therapeutic effects of this treatment depend on the applied 
temperature, exposure time and the volume of the tissue exposed to electro-
magnetic fields. The effectiveness of heat treatment can be significantly increa-
sed by combining hyperthermia with other cancer treatments such as radio-
therapy, chemotherapy, immunotherapy and gene therapy. 
 Numerical methods are often used for dosimetric calculations for a num-
ber of important bioelectromagnetic issues. Thermal analysis of this problem, 
using the FEM allows the estimation of the influence of semi-axis B of the 
excitation wire on temperature distribution in the specified area. The presented 
plots clearly show that increasing the value of B causes the temperature inside 
the tumor to rise under the same conditions but only to reach the limit value of  
B = 0.7 m. 

Adopted a two-dimensional model represents a major simplification of 
reality (simple geometry, averaged material parameters of the model, an infini-
tely thin of excitation wire), but it fully reflects the idea of treating tumors using 
hyperthermia and can be used to evaluate the actual temperature distribution in 
the three-dimensional case. 
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WPŁYW GEOMETRII PRZEWODU NA ROZKŁAD  
POLA TEMPERATURY WEWNĄTRZ CIAŁA LUDZKIEGO 

PODCZAS RF HIPERTERMII 
 
 

Piotr GAS 
 

STRESZCZENIE    W niniejszej pracy przedstawiono model nume-
ryczny stanowiący przykład zastosowania lokalno-regionalnej hi-
pertermii o częstotliwości radiowej. Ciało człowieka otoczone jest 
eliptycznym przewodem z wymuszającym prądem, a energia elektro-
magnetyczna koncentrowana jest wewnątrz guza. Dla uproszczenia 
przyjęto model dwuwymiarowy stanowiący przekrój poprzeczny przez 
ciało człowieka. Wykorzystując metodę elementów skończonych obli-
czono gęstość prądu indukowanego w ciele człowieka, a następnie roz-
wiązano biologiczne równanie ciepła dla przypadku zmiennego w czasie. 
Na końcu zestawiono uzyskane wyniki symulacji dla kilku konfiguracji 
przewodu. 
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