PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Parametryczne badanie fenomenologicznego modelu histerezy magnetycznej

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Parametric examination of a phenomenological model of ferromagnetic hysteresis
Języki publikacji
PL
Abstrakty
PL
Przedstawiono koncepcję fenomenologicznego modelu pętli histerezy magnetycznej, spójnego z zasadami termodynamiki procesów nieodwracalnych. Poddano krytyce opis Jilesa-Athertona. Przeanalizowano wpływ zmian wartości parametrów zaproponowanego modelu na kształt pętli histerezy.
EN
A concept of a phenomenological model of hysteresis loop, compliant with the principles of non-equilibrium thermodynamics, has been presented. The Jiles-Atherton description has been criticized. An analysis of the influence of variations of model parameters on the shape of the hysteresis loop has been carried out.
Rocznik
Tom
Strony
41--54
Opis fizyczny
Bibliogr. 75 poz., rys.
Twórcy
autor
Bibliografia
  • 1. Zakrzewski K., Pietras F.: Method of calculating the electromagnetic field and power losses in ferromagnetic materials, taking into account magnetic hysteresis, IEE Proc. A 118 (1971) 1679-1685.
  • 2. Dąbrowski M.: Analiza obwodów magnetycznych. Straty mocy w obwodach. Polska Akademia Nauk Seria: Elektrotechnika, tom III, PWN, Warszawa-Poznań, 1981.
  • 3. Iványi A.: Hysteresis models in electromagnetic computations, Akadémiai Kiadó, Budapest, 1997.
  • 4. Liorzou F., Phelps B., Atherton D.L.: Macroscopic models of magnetization, IEEE Trans.Magn. 36 (2000) 418-428.
  • 5. Mazgaj W.: Properties of hysteresis models, Arch. Electr. Eng. 216 (2006) 147-162.
  • 6. Preisach F.: Űber die magnetische Nachwirkung, Z. Phys. 94 (1935) 277-302.
  • 7. Stoner E.C., Wohlfarth E.P.: A mechanism of magnetic hysteresis in heterogenous alloys, Philos. Trans. R. Soc. A 240 (1948) 599-642, przedruk w IEEE Trans. Magn. 27 (1991) 3475-3518.
  • 8. Chua L.O., Stromsmoe K.A.: Lumped-circuit models for nonlinear inductors exhibiting hysteresis loops, IEEE Trans. Circ. Theor. 17 (1970) 564-574.
  • 9. Jiles D.C., Atherton D.L.: Theory of ferromagnetic hysteresis, J. Magn. Magn. Mater. 61(1986) 48-60.
  • 10. Szczerbanowski R., Zakrzewski K.: Obliczanie strat we współczesnych blachach transformatorowych, Przegl. Elektr. 6 (2011) 193-197.
  • 11. Philips D.A., Dupré L., Melkebeek J.A.A.: Comparison of Jiles and Preisach hysteresis models in magnetodynamics, IEEE Trans. Magn. 31 (1995) 3551-3553.
  • 12. Lederer D., Igarashi H., Kost A., Honma T.: On the parameter identification and application of the Jiles-Atherton hysteresis model for numerical modelling of measured characteristics, IEEE Trans. Magn. 35 (1999) 1211-1214.
  • 13. Szczygłowski J.: Influence of eddy currents on magnetic hysteresis loops in soft magnetic materials, J. Magn. Magn. Mater. 223 (2001) 97-102.
  • 14. Chwastek K., Szczygłowski J.: An alternative method to estimate the parameters of Jiles- -Atherton model, J. Magn. Magn. Mater. 314 (2007) 47-51.
  • 15. Benabou A., Leite J.V., Clénet S., Simão C., Sadowski N.: Minor loops modelling with a modified Jiles-Atherton model and comparison with the Preisach model, J. Magn. Magn. Mater. 320 (2008), e1034-e1038.
  • 16. Chwastek K., Szczygłowski J.: Estimation methods for the Jiles-Atherton model parameters – a review, Przegl. Elektr. 12 (2008)145-148.
  • 17. Chwastek K: Modelling offset minor hysteresis loops using the modified Jiles-Atherton description, J. Phys D: Appl. Phys. 42 (2009) 1652002 (5 s.).
  • 18. Chwastek K., Szczygłowski J., Wilczyński W.: Modelling dynamic hysteresis loops in steel sheets, COMPEL 28 (2009) 603-612.
  • 19. Chwastek K., Szczygłowski J., Wilczyński W.: Modelling magnetic properties of high silicon steel, J. Magn. Magn. Mater. 322 (2010) 799-803.
  • 20. Chwastek K.: Problems in descriptions of hysteresis, Przegl. Elektr. 4 (2010) 24-27.
  • 21. Kádár Gy.: On the product Preisach model of hysteresis, Physica B 275 (2000) 40-44.
  • 22. Harrison R.G.: A physical model of spin ferromagnetism, IEEE Trans. Magn. 39 (2003) 1506-1515.
  • 23. Andrei P., Stancu A., Hauser H., Fulmek P.: Temperature, stress, and rate dependent numerical implementation of magnetization processes in phenomenological models, J. Optoelectr. Adv. Mater. 9 (2007) 1137-1139.
  • 24. Chwastek K.: A dynamic extension to the Takács model, Physica B 405 (2010) 3800-3802.
  • 25. Pearson J., Squire P.T., Atkinson D.: Which anhysteretic magnetization curve?, IEEE Trans. Magn. 33 (1997) 3970-3972.
  • 26. Venkataraman R., Krishnaprasad P.S.: Qualitative analysis of a bulk ferromagnetic hysteresis model, Proc. IEEE Conf. Decision & Control, Tampa, Florida 1998, 2443-2449.
  • 27. Walker J.M.: Measurement and modeling of the anhysteretic magnetization for temperaturę and frequency effects, Univ. South Florida 2007 (http://scholarcommons.usf.edu/etd/2401).
  • 28. Boukhtache S., Azoui B., Féliachi M.: A novel model for magnetic hysteresis of silicon-iron sheets, Eur. Phys. J. Appl. Phys. 34 (2006) 201-204.
  • 29. Chwastek K.: Modelling magnetic properties of MnZn ferrites with the modified Jiles- Atherton description, J. Phys. D: Appl. Phys. 43 (2010) 015005 (5 str.).
  • 30. Chwastek K., Szczygłowski J.: The effect of anisotropy in the modified Jiles-Atherton model of static hysteresis, Arch. Electr. Eng. 60 (2011) 49-57.
  • 31. Chwastek K., Szczygłowski J., Wilczyński W.: Minor loops in the Harrison model, praca przedstawiona (poster MAP-03) na International Symposium on Hysteresis and Micromagnetic Modelling HMM’2011, Levico Terme, Italy, 9-11.05.2011.
  • 32. Halbert D., Etien E., Champenois G.: An inversible model for hysteresis characterization at constant flux amplitude, J. Electr. Eng. 55 (2004) 319-323.
  • 33. Henrotte F., Nicolet A., Hameyer K.: An energy-based vector hysteresis model for ferromagnetic materials, COMPEL 25 (2006) 71-80.
  • 34. Jiles D.C.: Frequency dependence of hysteresis curves in conducting magnetic materials, J. Appl. Phys. 76 (1994) 5849-5855.
  • 35. Takács J.: Mathematical proof of the anhysteretic state, Physica B 372 (2006) 57-60.
  • 36. Jiles D.C., Atherton D.L.: Theory of magnetisation process in ferromagnets and its application to the magnetomechanical effect, J. Phys. D: Appl. Phys. 17 (1984) 1265-1281.
  • 37. Dobranski L.G., Jiles D.C., Atherton D.L., Dependence of the anhysteretic magnetization on uniaxial stress in steel, J. Appl. Phys. 57 (1985) 4229-4231.
  • 38. Atherton D.L., Ton V.: The effects of stress on a ferromagnet on a minor hysteresis loop, IEEE Trans. Magn. 26 (1990) 1153-1156.
  • 39. Sablik M.J., Jiles D.C.: Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis, IEEE Trans. Magn. 29 (1993) 2113-2123.
  • 40. Kvasnica B., Kundracík F.: Fitting experimental anhysteretic curves of ferromagnetic materials and investigation of the effect of temperature and tensile stress, J. Magn. Magn. Mater. 162 (1996) 43-49.
  • 41. Sablik M.J., Langman R.A.: Approach to the anhysteretic surface, J. Appl. Phys. 79 (1996) 6134-6136.
  • 42. Stevens K.J.: Stress dependence of ferromagnetic hysteresis for two grades of steel, NDT&E Int. 33 (2000) 111-121.
  • 43. Naus H.W.L.: Ferromagnetic hysteresis and the effective field, IEEE Trans. Magn. 38 (2002) 3417-3419.
  • 44. Chen G., Shiwa M., Honeyama H.: Theoretical investigation of change of magnetic property due to creep damage using Jiles-Atherton magnetization model, Int. J. Appl. Electromagn. Mech. 16 (2002) 189-196.
  • 45. Péra Th., Ossart Fl., Waeckerlé Th.: Numerical representation for anisotropic materials based on coenergy modeling, J. Appl. Phys. 73 (1993) 6784-6786.
  • 46. Cornut B., Kedous-Lebouc A., Waeckerlé Th.: From metallurgy to modelling of electrical steels: a multiple approach to their behaviour and use based on physics and experimental investigations (invited paper), J. Magn. Magn. Mater. 160 (1996) 102-106.
  • 47. Biró O., Außerhofer S., Preis K., Chen Y.: A modified elliptic model of anisotropy in nonlinear magnetic materials, Proc. 8th Int. Symp. on Electric and Magnetic Fields EMF'2009, Mondovi (Italy), 26th-29th May 2009, Book of Abstracts, 2009, 25-26, full text on CD ISSN 2030-5451.
  • 48. Chwastek K., Najgebauer M., Szczygłowski J., Wilczyński W.: Modelling the influence of anisotropy on magnetic properties in grain-oriented steels, Przegl. Elektr. 3 (2011) 126-128.
  • 49. Gans R.: Die Gleichung der Kurve der reversiblen Suszeptibilität, Z. Phys. 12 (1911) 1053-1054.
  • 50. Grimes D.M. Reversible susceptibility in ferromagnets, PhD Thesis, University of Michigan, Ann Arbor, 1956.
  • 51. Atherton D.L., Schönbächler M.: Measurements of reversible magnetization, IEEE Trans. Magn. 24 (1988) 616-620.
  • 52. Kádár Gy.: On the Preisach function of ferromagnetic hysteresis, J. Appl. Phys. 61 (1987) 4013-4015.
  • 53. Kádár Gy., Szabó Zs., Vértesy G.: Product Preisach model parameters from measured magnetization curves, Physica B 343 (2004) 137-141.
  • 54. Della Torre E., Kádár Gy.: Hysteresis modelling: I. Noncongruency, IEEE Trans. Magn. 23 (1987) 2820-2822.
  • 55. Benda O., Barta Št.: Open problems in the Preisach modeling of magnetic hysteresis, 380-385, w: Nonlinear Electromagnetic Systems, A.J. Moses and A. Basak (Eds.), IOS Press, Amsterdam, 1996.
  • 56. Benda O., Bydzovský J.: Problems in modelling reversible processes in soft magnetic materials, J. Magn. Magn. Mater. 160 (1996) 87-88.
  • 57. Jiles D.C.: Introduction to magnetism and magnetic materials, Chapman & Hall, London 1991, p. 167.
  • 58. Bergqvist A.: Magnetic vector hysteresis model with friction-like pinning, Physica B 233 (1997) 342-347.
  • 59. Bergqvist A., Lundgren A., Engdahl G.: Experimental testing of an anisotropic vector hysteresis model, IEEE Trans. Magn. 33 (1997) 4152-4157.
  • 60. Henrotte F., Hameyer K.: A dynamical vector hysteresis model based on an energy approach, IEEE Trans. Magn. 42 (2006) 899-902.
  • 61. Zidarič B., Miljavec D.: A new ferromagnetic hysteresis model for soft composite materials, J. Magn. Magn. Mater. 323 (2011) 67-71.
  • 62. Schwarz J.: Détermination des pertes par histeresis dans un échantillon de métal, Rev. Gen. Électr. (1927) 619.
  • 63. Takács J.: A phenomenological mathematical model of hysteresis, COMPEL 20 (2001) 1002-1014.
  • 64. Takács J.: Mathematics of hysteresis phenomena, Wiley-VCH, Weinheim 2003.
  • 65. Angeli M., Cardelli E., Della Torre E.: Modelling of magnetic cores for power electronics applications, Physica B 275 (2000) 154-158.
  • 66. Nakmahachalasint P., Ngo K.D.T.: Generalized formulation for the description of hysteresis in soft magnetic materials, IEEE Trans. Magn. 38 (2002) 200-202.
  • 67. Basso V., Bertotti G.: Hysteresis models for the description of domain wall motion, IEEE Trans. Magn. 32 (1996) 4210-4212.
  • 68. Gumiński K: Termodynamika procesów nieodwracalnych, PWN, Warszawa, 1962.
  • 69. Rymarz Cz.: Mechanika ośrodków ciągłych, PWN, Warszawa, 1993.
  • 70. Bertotti G.: Hysteresis in magnetism, Academic Press, San Diego, 1998.
  • 71. Őttinger H.C.: Beyond equilibrium thermodynamics, J. Wiley & Sons, Hoboken, 2005.
  • 72. Schneider C.S., Winchell S.D.: Hysteresis in conducting ferromagnets, Physica B 372 (2006) 269-272.
  • 73. Chwastek K., Szczygłowski J., Najgebauer M.: A direct-search algorithm for estimation of Jiles-Atherton hysteresis model parameters, Mater. Sci. Eng. B 131 (2006) 22-26.
  • 74. Jiles D.C.: Hysteresis models: non-linear magnetism on length scales from the atomistic to the macroscopic, J. Magn. Magn. Mater. 242-245 (2002) 116-124.
  • 75. Josephson B.D.: Macroscopic field equations for metals in equilibrium, Phys. Rev. 152 (1966) 211-217.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0064-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.