PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Two-level approach for solving the inverse problem of defects identification in Eddy Current Testing - type NDT

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work deals with the inverse problem associated to 3D crack identification inside a conductive material using eddy current measurements. In order to accelerate the time-consuming direct optimization, the reconstruction is provided by the minimization of a last-square functional of the data-model misfit using space mapping (SM) methodology. This technique enables to shift the optimization burden from a time consuming and accurate model to the less precise but faster coarse surrogate model. In this work, the finite element method (FEM) is used as a fine model while the model based on the volume integral method (VIM) serves as a coarse model. The application of the proposed method to the shape reconstruction allows to shorten the evaluation time that is required to provide the proper parameter estimation of surface defects.
Rocznik
Strony
497--518
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
autor
autor
autor
Bibliografia
  • [1] Isakov V., Uniqueness and stability in multidimensional inverse problems. Inverse Problems 9: 579-621 (1993).
  • [2] Yamamoto M., A mathematical aspect of inverse problems for non-stationary Maxwell’s equations. Int. J. Appl. Electromagn. Mech. 8: 77-98 (1997).
  • [3] Monebhurrun V., Duchene B., Lesselier D., Three-dimensional inversion of Eddy Current Data for non-destructive evaluation of steam generator tubes. Inverse Problems 14: 707-724 (1998).
  • [4] Badics Z., Pavo J., Fast Reconstruction from Eddy Current Data. IEEE Transactions on Magnetics 34(5): 2823-2828 (1998).
  • [5] Tamburino A., Rubinacci G., Fast methods for quantitative eddy-current tomography of conductive materials. IEEE Trans. Magn. 42(206): 2017-2028.
  • [6] Pirani A., Ricci M., Specogna R. at al., Multi-frequemcy identification of defects in conducting media. Inverse Problem 24: 1-18 (2008).
  • [7] Gawrylczyk K.M., Putek P., Adaptive meshing algorithm for recognition cracks. COMPEL 23: 677-684 (2004).
  • [8] Chady T., Enokizono M., Sikora R. at al., Natural crack recognition using inverse neural model and multi-frequency eddy current method. IEEE Transactions on Magnetics 37(4): 2797-2799 (2001).
  • [9] Sikora R., Baniukiewicz P., Reconstruction of cracks from eddy current signals using genetic algorithm and fuzzy logic. Review of progress in quantitative nondestructive evaluation. Springer Verlag pp. 775-782 (2005).
  • [10] Bandler J.W., Cheng Q.S., Dakroury S.A. et al., Space mapping: the state of the art. IEEE Transactions on Microwave Theory and Techniques 52(1): 337-361 (2004).
  • [11] Encica L., Echeverr ́ıa D., Lomonova E. et al., Efficient optimal design of electromagnetic actuators using space mapping. Structural and Multidisciplinary Optimization 33(6): 481-491 (2007).
  • [12] Crevecoeur G., Sergeant P., Dupré L., Van de Walle R., Two-level response and parameter mapping optimization for magnetic shielding. IEEE Transactions on Magnetics 44(issue 2): 301-308 (2008).
  • [13] Amineh R.K., Koziel S., Nikolova N.K. et al., A Space Mapping Methodology for defect characterization from magnetic flux leakage measurements. IEEE Trans. on Magnetics 44(8): pp. 2058-2065 (2008).
  • [14] Takagi T., Ueseka M., Miya K., Electromagnetic NDE research activities in JSAEM. Studies in Applied Electromagnetic and Mechanic vol. 12, IOS Press (1997).
  • [15] Biro O., Richeter R., CAD in elektromagnetism, advances in electronics and electron physics, P.W. Hawkes Ed 82 (1991).
  • [16] Bowler J.R., Jenkins S.A., Validation of three dimensional Eddy-Current probe flaw interaction model using analytical results. IEEE Transactions on Magnetics 26(5): 2085-2088 (1990).
  • [17] Norton S.J., Bowler J.R. Theory of eddy current inversion. Journal of Applied Physics 73: 501-513 (1993).
  • [18] Bowler J.R., Eddy current interaction with an ideal crack. Part I: The forward problem. Journal of Applied Physics 75(12): 8128-8137 (1994).
  • [19] Dodd C.V., Deeds W.E., Analytical solution to eddy-current probe-coil problem. Journal of Applied Physics 39(6): 2829-2838 (1968).
  • [20] Silvester P.P., Ferrari R.L. Finite elements for electrical engineers. Cambridge University Press, Cambridge, UK (1990).
  • [21] Bowler J.R., Jenkins S.A., Sabbagh L.D., Sabbagh H.A., Eddy-current impedance due to a volumetric flaw. Journal of Applied Physics 70(3): 1107-1114 (1990).
  • [22] Bowler J.R., Norton S.J., Harrison D.J. Eddy current interaction with an ideal crack. Part II: The inverse problem. Journal of Applied Physics 75(12): 8138-8144 (1994).
  • [23] Theodoulidis T.P., Kriezis E.E., Eddy current canonical problems (with applications to nondestructive evaluation). TechScience Press (2006).
  • [24] Monebhurrun V., Lesselier D., Duchene B., Evaluation of a 3-D bounded defect in the wall of a metal tube at eddy current frequencies: the direct problem. J. Electromagn. Waves Applic. 12: 315-347 (1998).
  • [25] Felipe J., Abascal P.J., Lambert M., 3-D eddy-current imaging of metal tubes by gradient-based controlled evolution of level sets. IEEE Trans. on Magnetics 44(12): 4721-4729 (2008).
  • [26] Dyck D.N., Lowther D.A.. A method of computing the sensitivity of electromagnetic quantities to changes in material and sources. IEEE Trans. on Magn. 30(5): 3415-3418 (1994).
  • [27] Gawrylczyk K.M., Putek P., Multi-frequency sensitivity analysis of 3d models utilizing impedance boundary condition with scalar magnetic potential. Advanced Computer Techniques in Applied Electromagnetics 30 (2008).
  • [28] Hansen Ch., Regularization tools for a Matlab package for analysis and solution of discrete ill-posed problems. Numerical algorithm 6, the last version September pp.: 1-35 (2001).
  • [29] Echeverr ́ıa D., Lahaye D., Encica L. et al., Manifold-mapping optimization applied to linear actuator design. IEEE Transactions on Magnetics 42(2): 1183-1186 (2007).
  • [30] Putek P., Crevecoeur G., Slodička M. et al., Application of space mapping methodology to defects recognition in eddy current testing. Proceedings of the 11th Workshop on Optimisation and Inverse Problems in Electromagnetism (OIPE), Sofia, Bulgaria, pp. P17 (2010).
  • [31] Koziel S., Bandler J.W., Madsen K. A space mapping framework for engineering optimization: theory and implementation. IEEE Trans. Microwave Theory Tech. 54(10): 3721-3730 (2006).
  • [32] Koziel S., Bandler J.W. Space mapping optimization with adaptive surrogate model. IEEE Trans. Microwave Theory Tech. 55(3): 541-547 (2007).
  • [33] Theodoulidis T., Poulakis N., Dragogias A. Rapid computation of eddy current signals from narrow cracks. NDT&E International 43: 13-19 (2010).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0063-0053
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.