PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hamiltonian model of electromechanical actuator in natural reference frame.: Part II: Equations and simulations

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper a novel mathematical model of electromechanical actuator is presented. It is based on application of Hamiltonian equations in the description of electro-mechanical energy conversion. It results in employment of flux linkages as state variables in the state space equations. For simplicity only a 3-phase wye connected stator winding without a neutral wire is considered in detail. The procedure can be generalised to any number of phases. Topology-based approach is used in the model implementation. Procedures for evaluation of all quantities (currents, energy/coenergy, electro-magnetic torque) present in model equations are described. Eddy currents and hysteresis phenolmenon are neglected in formulation of the model to enable application of state-space description.
Rocznik
Strony
331--348
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
  • Department of Mechatronics, Faculty of Electrical Engineering, Silesian University of Technology, Akademicka 10a, 44-100 Gliwice, wojciech.burlikowski@polsl.pl
Bibliografia
  • [1] Arkkio A., Hannukainen A., Niemenmaa A. Power balance for verifying torque computation within time-discretized finite-element analysis. XXI Symposium Electromagnetic Phenomena in Nonlinear Circuits EPNC’2010, Germany, Dortmund and Essen, pp.23-24.
  • [2] Agoston M.K., Computer graphics and geometric modeling – mathematics. Springer 2005.
  • [3] Boldea I. Nasar S.A., Electric drives.Taylor&Francis (2005).
  • [4] Boldea I., Reluctance synchronous machines & drives. Oxford Univ. Press (1996).
  • [5] Borsuk K., Multidimensional analytical geometry. PWN, Warsaw (1977) (in Polish).
  • [6] Brown J.E., Kovacs K.P., Vas P., A method of including the effects of main flux path saturation in generalised equations of A.C. machines. IEEE Transactions on Power Apparatus and Systems PAS-102(l): 96-103 (1983).
  • [7] Burlikowski W., Mathematical model of an electromechanical actuator using flux state variables applied to reluctance motor, COMPEL 25(1): 169-180 (2006).
  • [8] Burlikowski W., Influence of saturation modelling method on results obtained using different implementations of reluctance motor simulational model. XX Symposium Electromagnetic Phenomena in Nonlinear Circuits EPNC’2008, France, Lille, pp. 69-70 (2008).
  • [9] Chua L.O., Desoer C.A., Kuh E.S., Linear and nonlinear circuits. McGraw-Hill (1987).
  • [10] Chua L.O., McPherson J.D., Explicit topological formulation of lagrangian and Hamiltonian equations for nonlinear networks. IEEE Transactions on Circuits and Systems CAS-21(2): 277-286 (1974).
  • [11] Coulomb J.I., A methodology for determination of global electromechanical quantities from a finite element analysis and its application to the evaluation of magnetic forces, torques and stiffness. IEEE Trans. Magn. 19: 25 14-25 19 (1983).
  • [12] De Berg M., Van Kreveld M., Overmars M., Schwarzkopf O., Computational Geometry. Springer (2000).
  • [13] Demenko A. Movement Simulation in Finite Element Analysis of Electric Machine Dynamics, IEEE TRANSACTIONS ON MAGNETICS, VOL 32. NO 3, MAY 1996, pp. 1553-1556.
  • [14] Demenko A. Time-Stepping FE Analysis of Electric Motor Drives with Semiconductor Converters, IEEE TRANSACTIONS ON MAGNETICS, VOL. 30, NO. 5, SEPTEMBER 1994, pp. 3264-3267.
  • [15] Demenko A. , Hameyer K. Field and Field-Circuit Description of Electrical Machines, Proc. of EPE-PEMC 2008, pp. 2412-2419.
  • [16]Engelking R., Sieklucki K., Introduction to topology, (in Polish), PWN, 1986.
  • [17] Fryze S. Selected problems of theoretical basis of electrical engineering, (in Polish), PWN, Warsaw-Wrocław,1966.
  • [18] Goodman J.E., O’Rourke J., et al. Handbook of discrete and computational geometry. CRC Press (1997).
  • [19] Groff R.E., Piecewise linear homeomorphisms for approximation of invertible maps. Ph.D. Thesis, Univ. of Michigan (2003).
  • [20] Hu, Y., Torrey, D.A., Study of the mutually coupled switched reluctance machine using the finite element-circuit coupled method. IEE Proceedings – Electric Power Applications 149(2): 81-86 (2002).
  • [21] Jagieła M., Grabiec T., Coupling electromagnetic (FE) models to multidomain simulator to analyse eletrical driver and complex control systems. AEE 59(3-4): 189-201 (2010).
  • [22] Jeltsema D., Scherpen J.M.A., Multidomain modeling of nonlinear networks and systems. IEEE Control Systems Magazine, August, pp. 28-59 (2009).
  • [23] Kang S.M., Chua L.O., A global representation of multidimensional piecewise-linear functions with linear partitions. IEEE Transactions on Circuits and Systems CAS-25(11): 938-940 (1978).
  • [24] Kluszczyński K., Spałek D., Step-by-step analysis of induction machines allowing for slotting. Polish Society for Theoretical and Applied Electrical Engineering, Warsaw (2002).
  • [25] Krause P., Analysis of electric machinery. McGraw-Hill (1986).
  • [26] Ludwinek K., Siedlarz A., Harmonic distortion analysis in armature currents of synchronous machine during co-operation with the power system. Zeszyty Problemowe Maszyny Elektryczne 84: 217-223 (2009).
  • [27] Matlab on-line Manual, R2010a, 2010.
  • [28] Meeker D., Finite element method magnetics. User’s Manual, Ver. 4.2 (2007).
  • [29] Meunier G., et al., The finite element method for electromagnetic modelling. ISTE Ltd (2008).
  • [30] Nehl T.W., Fouad F.A., Demerdash N.A., Determination of saturated values of rotating machinery incremental and apparent inductances by an energy perturbation method. IEEE Transactions on Power Apparatus and Systems PAS-101(11): 4441-4451 (1982).
  • [31] Nowak, L., Dynamic operation of an electromechanical actuator, COMPEL18(4): 611-618 (1999).
  • [32] Ozturk S.B., Toliyat H.A., Sensorless direct torque and indirect flux control of brushless DC motor with non-sinusoidal back-EMF. Proc. IEEE-IECON Annu. Meeting, Orlando, pp. 1373-1378 (2008).
  • [33] Park R.H., Two-reaction theory of synchronous machines – generalized method of analysis – Part I. AIEE Trans. 48:716-727 (1929).
  • [34] Paszek W., Dynamics of alternating current electric machines., Helion, Gliwice (1998) (in Polish).
  • [35] Puchała A., Dynamics of machines and electromechanical systems., PWN, Warsaw (1977) (in Polish).
  • [36] Schlensok Ch., Henneberger G., Simulation of a PMSM with SIMPLORER-FLUX2D-Coupling. CD-ROM Proc. of XVth ICEM’2002, Brugge-Belgium, August (2002).
  • [37] Schmitz N.L., Novotny D.W., Introductory electromechanics. The Ronald Press Company, New York (1965).
  • [38] Sobczyk T.J., Inductanceless model of salient-pole synchronous machines. Proc. of SPEEDAM, pp. 620-625 (2008).
  • [39] Sobczyk T.J., Methodological aspects of mathematical modeling of induction machines. WNT, Warsaw (2004) (in Polish).
  • [40] Spanier E.H., Algebraic topology. McGraw-Hill Series in Higher Mathematics (1972).
  • [41] Stern T.E., Piecewise-linear network theory. MIT, Research Laboratory of Electronics, Technical Report 315 (1956).
  • [42] Stumberger G., Stumberger B., Dolinar D., Identification of linear synchronous reluctance motor parameters. IEEE Transactions On Industry Applications 40(5): 1317-1324 (2004).
  • [43] Wach P., Devices for electromechanical energy conversion. Opole (1991) (in Polish).
  • [44] Zomorodian A.J., Topology for computing. Cambridge Monographs on Applied and Computational Mathematics (2005).
  • [45] Zunoubi M.R., Payne J., Roach W.P., CUDA Implementation of TEz-FDTD solution of Maxwell’s equations in dispersive media. IEEE Antennas and Wireless Propagation Letters 9: 756-759 (2010). [P. I] Part I of the paper.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0063-0041
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.