PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hamiltonian model of electromechanical actuator in natural reference frame.: Part I: Topology-based approximation algorithm

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper a novel mathematical model of electromechanical actuator is presented. It is based on application of Hamiltonian equations in the description of electromechanical energy conversion. It results in employment of flux linkages as state variables in the state space equations. For simplicity only a 3-phase wye connected stator winding without a neutral wire is considered in detail. The procedure can be generalised to any number of phases. Topology-based approach is used in the model implementation. Procedures for evaluation of all quantities (currents, energy/coenergy, electromagnetic torque) present in model equations are described. Eddy currents and hysteresis phenolmenon are neglected in formulation of the model to enable application of state-space description.
Rocznik
Strony
317--330
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
  • Department of Mechatronics, Faculty of Electrical Engineering, Silesian University of Technology, Akademicka 10a, 44-100 Gliwice, wojciech.burlikowski@polsl.pl
Bibliografia
  • [1] Arkkio A., Hannukainen A., Niemenmaa A., Power balance for verifying torque computation within time-discretized finite-element analysis. XXI Symposium Electromagnetic Phenomena in Nonlinear Circuits EPNC’, Germany, Dortmund and Essen, pp. 23-24 (2010).
  • [2] Agoston M.K., Computer graphics and geometric modeling – mathematics. Springer (2005).
  • [3] Boldea I., Nasar S.A., Electric drives. Taylor&Francis (2005).
  • [4] Boldea I., Reluctance synchronous machines & drives. Oxford Univ. Press (1996).
  • [5] Borsuk K., Multidimensional analytical geometry. PWN, Warsaw (1977) (in Polish).
  • [6] Brown J.E., Kovacs K.P., Vas P., A method of including the effects of main flux path saturation in generalised equations of A.C. machines. IEEE Transactions on Power Apparatus and Systems, PAS-102(l): 96-103 (1983).
  • [7] Burlikowski W., Mathematical model of an electromechanical actuator using flux state variables applied to reluctance motor. COMPEL 25(1): 169-180 (2006).
  • [8] Burlikowski W., Influence of saturation modelling method on results obtained using different implementations of reluctance motor simulational model. XX Symposium Electromagnetic Phenomena in Nonlinear Circuits EPNC’2008, France, Lille, July, pp. 69-70 (2008).
  • [9] Chua L.O., Desoer C.A., Kuh E.S., Linear and nonlinear circuits. McGraw-Hill (1987).
  • [10] Chua L.O., McPherson J.D., Explicit topological formulation of lagrangian and Hamiltonian equations for nonlinear networks. IEEE Transactions on Circuits and Systems CAS-21(2), March, pp. 277-286 (1974).
  • [11] Coulomb J.I., A methodology for determination of global electromechanical quantities from a finite element analysis and its application to the evaluation of magnetic forces, torques and stiffness. IEEE Trans. Magn. 19, pp. 25 14-25 19, November (1983).
  • [12] De Berg M., Van Kreveld M., Overmars M., Schwarzkopf O., Computational geometry, Springer (2000).
  • [13] Demenko A., Movement simulation in finite element analysis of electric machine dynamics. IEEE Transactions on Magnetics 32(3): 1553-1556 (1996).
  • [14] Demenko A., Time-stepping FE analysis of electric motor drives with semiconductor converters. IEEE Transactions on Magnetics 30(5): 3264-3267 (1994).
  • [15] Demenko A., Hameyer K., Field and field-circuit description of electrical machines. Proc. of EPE-PEMC, pp. 2412-2419 (2008).
  • [16] Engelking R., Sieklucki K., Introduction to topology. PWN (1986) (in Polish).
  • [17] Fryze S., Selected problems of theoretical basis of electrical engineering. PWN, Warsaw-Wrocław (1966) (in Polish).
  • [18] Goodman J.E., O’Rourke J., et al. Handbook of discrete and computational geometry. CRC Press (1997).
  • [19] Groff R.E., Piecewise linear homeomorphisms for approximation of invertible maps. Ph.D. Thesis, Univ. of Michigan (2003).
  • [20] Hu, Y., Torrey, D.A., Study of the mutually coupled switched reluctance machine using the finite element-circuit coupled method. IEE Proceedings – Electric Power Applications 149(2): 81-86 (2002).
  • [21] Jagieła M., Grabiec T., Coupling electromagnetic (FE) models to multidomain simulator to analyse eletrical driver and complex control systems. AEE 59(3-4): 189-201 (2010).
  • [22] Jeltsema D., Scherpen J.M.A., Multidomain modeling of nonlinear networks and systems. IEEE Control Systems Magazine, August, pp. 28-59 (2009).
  • [23] Kang S.M., Chua L.O., A global representation of multidimensional piecewise-linear functions with linear partitions. IEEE Transactions on Circuits and Systems CAS-25(11): 938-940 (1978).
  • [24] Kluszczyński K., Spałek D., Step-by-step analysis of induction machines allowing for slotting. Polish Society for Theoretical and Applied Electrical Engineering, Warsaw (2002).
  • [25] Krause P., Analysis of electric machinery. McGraw-Hill (1986).
  • [26] Ludwinek K., Siedlarz A., Harmonic distortion analysis in armature currents of synchronous machine during co-operation with the power system. Zeszyty Problemowe Maszyny Elektryczne 84: 217-223 (2009).
  • [27] Matlab on-line Manual. R2010a, 2010.
  • [28] Meeker D., Finite element method magnetics. User’s Manual, Ver. 4.2 (2007).
  • [29] Meunier G., et al., The finite element method for electromagnetic modelling. ISTE Ltd (2008).
  • [30] Nehl T.W., Fouad F.A., Demerdash N.A., Determination of saturated values of rotating machinery incremental and apparent inductances by an energy perturbation method. IEEE Transactions on Power Apparatus and Systems PAS-101(11): 4441-4451 (1982).
  • [31] Nowak, L., Dynamic operation of an electromechanical actuator. COMPEL18(4): 611-618 (1999).
  • [32] Ozturk S.B., Toliyat H.A., Sensorless direct torque and indirect flux control of brushless DC motor with non-sinusoidal back-EMF. Proc. IEEE-IECON Annu. Meeting, Orlando, pp. 1373-1378 (2008).
  • [33] Park R.H., Two-reaction theory of synchronous machines – generalized method of analysis – Part I. AIEE Trans. 48: 716-727 (1929).
  • [34] Paszek W., Dynamics of alternating current electric machines., Helion, Gliwice (1998) (in Polish).
  • [35] Puchała A., Dynamics of machines and electromechanical systems. PWN, Warsaw (1977) (in Polish).
  • [36] Schlensok Ch., Henneberger G., Simulation of a PMSM with SIMPLORER-FLUX2D-Coupling. CD-ROM Proc. of XVth ICEM’2002, Brugge-Belgium, August (2002).
  • [37] Schmitz N.L., Novotny D.W., Introductory electromechanics. The Ronald Press Company, New York (1965).
  • [38] Sobczyk T.J., Inductanceless model of salient-pole synchronous machines. Proc. of SPEEDAM, pp. 620-625 (2008).
  • [39] Sobczyk T.J., Methodological aspects of mathematical modeling of induction machines. WNT, Warsaw (2004) (in Polish).
  • [40] Spanier E.H., Algebraic topology. McGraw-Hill Series in Higher Mathematics (1972).
  • [41] Stern T.E., Piecewise-linear network theory. MIT, Research Laboratory of Electronics, Technical Report 315 (1956).
  • [42] Stumberger G., Stumberger B., Dolinar D., Identification of linear synchronous reluctance motor parameters. IEEE Transactions On Industry Applications 40(5): 1317-1324 (2004).
  • [43] Wach P., Devices for electromechanical energy conversion. Opole (1991) (in Polish).
  • [44] Zomorodian A.J., Topology for computing. Cambridge Monographs on Applied and Computational Mathematics (2005).
  • [45] Zunoubi M.R., Payne J., Roach W.P., CUDA Implementation of TEz-FDTD solution of Maxwell’s equations in dispersive media. IEEE Antennas and Wireless Propagation Letters 9: 756-759 (2010). [P. II] Part II of the paper.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0063-0040
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.