PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-input multi-output fuzzy logic controller for utility electric vehicle

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Currently commercialization of electric vehicle (EV) is based to minimize the time of starting and acceleration. To undergo this problem multi-input multi-output fuzzy logic controller (MIMO-FLC) affect on propelled traction system forming MMS process was proposed. This paper introduces a MIMO-FLC applied on speeds of electric vehicle, the electric drive consists of two directing wheels and two rear propulsion wheels equipped with two light weight induction motors. The EV is powered by two motors of 37 kilowatts each one, delivering a 476 Nm total torque. Its high torque (476Nm) is instantly available to ensure responsive acceleration performance in built-up areas. Acceleration and steering are ensured by an electronic differential system which maintains robust control for all cases of vehicle behavior on the road. It also allows controlling independently every driving wheel to turn at different speeds in any curve. Direct torque control based on space vector modulation (DTC-SVM) is proposed to achieve the tow rear driving wheel control. The MIMO-FLC control technique is simulated in MATLAB SIMULINK environment. The simulation results have proved that the MIMO-FLC method decreases the transient oscillations and assure efficiency comportment in all type of road constraints, straight, slope, descent and curved road compared to the single input single output fuzzy controller (SISO-FLC).
Rocznik
Strony
239--256
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
autor
  • Faculty of Sciences and Technology, Department of Electrical Engineering, Bechar University, B.P 417 BECHAR (08000), Algeria, gasbaoui_2009@yahoo.com
Bibliografia
  • [1] Yang Y.P., Lo C.P., Current distribution control of dual directly driven wheel motors for electric vehicles. Control Engineering Practice 16(11): 1285-1292 (2008).
  • [2] He P., Hori Y., Kamachi M. et al., Future motion control to be realized by in-wheel motored electric vehicle. In Proceedings of the 31st Annual Conference of the IEE Industrial Electronics Society, IEEE Press, Raliegh South Carolina, USA, pp. 2632-2637 (2005).
  • [3] Kang J.K., Sul S.K., New direct torque control of induction motor for minimum torque ripple and constant switching frequency. IEEE Trans. Ind. Applicat. 35(5): 1076-1082 (1999).
  • [4] Chan C.C. et al., Electric vehicles charge forward. IEEE Power Energy Mag. 2(6): 24-33 (2004).
  • [5] Zhu Z. et al., Electrical machines and drives for electric, hybrid, and fuel cell vehicles. Proc. IEEE 95(4): 764-765 (2007).
  • [6] Vas P., Sensorless Vector and direct torque control, Oxford University Press (1998).
  • [7] Itoh K., Kubota H., Thrust ripple reduction of linear induction motor with direct torque control. Proceedings of the Eighth International Conference on Electrical Machines and Systems, ICEMS 2005, 1: 655-658 (2005).
  • [8] Chen L., Fang K.L. A novel direct torque control for dual-three-phase induction motor, Conf. Rec. IEEE International Conference on Machine Learning and Cybernetics, pp. 876-888 (2003).
  • [9] Vas P., Sensorless vector and direct torque control. Oxford University Press, 1998.
  • [10] Schell A., Peng H., Tran D., Stamos E., Modeling and control strategy development for fuel cell electric vehicle. Annual Review in Control Elseiver 29: 159-168 (2005).
  • [11] Haddoun A., Modeling, Analysis and neural network control of an EV electrical differentiel. Transaction on Industriel Electronic 55(6), (2008).
  • [12] Nasri A., Hazzab A., Bousserhane I.K. et al., Two wheel speed robust sliding mode control for electric vehicle drive. Serbian Journal of Electrical Engineering 5(2): 199-216 (2008).
  • [13] Hartani K., Electronic differential with direct torque fuzzy control for vehicle propulsion system. Turk J. Elec. Eng. & Comp. Sci. 17(1), (2009), TUBITAK.
  • [14] Lam L.T., Lovey R., Developpement of ultra-battery for hybrid-electric vehicle applications. Elservier, power sources Vol. 158: 1140-1148 (2006).
  • [15] Larminie, Electric vehicle technology explained. John Wiley, John Lowry (ed.), England (2003).
  • [16] Haddoun A. et al., Analysis modeling and neural network of an electric vehicle. In: Proc IEEE IEMDC, Antalya Turky, pp. 854-859 (2007).
  • [17] Vasudevan M., Arumugam R., New direct torque control scheme of induction motor for electric vehicles. 5-th Asian Control Conference 2: 1377-1383 (2004).
  • [18] Benbouzid M.E.H. et al., Advanced fault-tolerant control of induction motor drives for EV/HEV traction applications. From conventional to modern and intelligent control techniques. IEEE Trans. Veh. Technol. 56(2): 519-528 (2007).
  • [19] Gupta A., Khambadkone A.M., A space vector pwm scheme for multilevel inverters based on two-level space vector pwm. IEEE Transaction on Industrial Electronics 53 (2006).
  • [20] Habetler T.G., Profumo F., Pastorelli M., Tolbert L. Direct torque control of induction machines using space vector modulation. IEEE Transaction on Industry Applications 28(5): 1045-1053 (1992).
  • [21] Holtz J., Pulsewidth modulation for electronic power onversion. Proceedings of the IEEE 82: 1194-1214 (1994).
  • [22] Zhou K. et al., Relationship between space-vector modulation and three-phase carrier-based PWM: a comprehensive analysis. IEEE Trans. Industrial Electronics 49(1): 186-195 (2002).
  • [23] Jun Fu T. et al., Torque control of induction motors for hybrid electric vehicles. Proceedings of the IEEE ACC'06, Minneapolis (USA), pp. 5911-5916 (2006).
  • [24] Zelechowski M. et al., Controller design for direct torque controlled space vector modulation (DTCSVM) induction motor drives. Proceedings of the IEEE ISIE'05, Dubrovnik (Croatia), pp. 951-956 (2005).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0063-0035
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.