
 
 
Michał GROBELNY 
 
 
 
 

TRANSFORMATION OF UML 2.x  
ACTIVITY DIAGRAMS INTO CONTROL 

INTERPRETED PETRI NETS IN  
HARDWARE BEHAVIOURAL MODELLING 

 
 
 
 
 

ABSTRACT  Behavioural specification is one of the most important 
steps in embedded systems design. This phase play a key role cause 
in this step the shape and behaviour of the final product is esta-
blished. The process can be realized with use of various technologies 
and tools supporting the phase. Two of the technologies supporting 
behavioural modelling are UML activity diagrams and Petri nets. The 
paper presents transformation of UML activity diagrams into control 
interpreted Petri nets. Transformation is targeted for project in which 
both technologies are used in parallel. The system described in the 
paper is realized as a bridge between mentioned modelling techno-
logies fully supporting automation of the transformation process. 
Moreover, the system enables use of additional techniques such as 
formal verification or hardware description language code generation. 
 
 
Keywords:   Petri nets, UML Activity Diagrams, transformation, con-
trol process, hardware behavioural modelling 

 
 
 
 

Michał GROBELNY, M.Sc. Eng. 
e-mail: m.grobelny@weit.uz.zgora.pl 

 
Faculty of Electrical Eng., Computer Sc. and Telecomm.,  

University of Zielona Gora 
 

PROCEEDINGS OF ELECTROTECHNICAL INSTITUTE, Issue 251, 2011 



88 M. Grobelny 

 
 
 
 
1. INTRODUCTION 
 

Behavioural specification is one of the most important steps in embedded 
systems design [1, 2, 14]. In this phase system properties and main functionality 
goals are specified. Moreover, the higher importance of the first parts of project 
is due to possible consultations with client. Not always client is a highly 
professional specialist therefore the simple project behavioural description can 
help both parts of the consultations. UML activity diagrams [12] are easy 
understandable and commonly used behaviour description technique. UML is 
nowadays also used in business areas what may help in client-engineer 
communication. On the other hand Petri nets [6, 7] are also very common 
(especially in engineering community) and well supported mathematical 
technique available for a very long time.  

The lack of transformation mechanism between control interpreted Petri 
nets and UML activity diagrams in control process behavioural specification 
where motivation to research the topic. First phase of investigation was 
comparison of both specification techniques [11] to localize fundamental 
elements and mechanism enabling future basis of transformation rules. Both 
behavioural specification techniques ensure necessary mechanisms for beha-
vioural modelling of discreet systems such as parallelisms, synchronizations or 
sequencing of tasks. Furthermore, the fact of influence of Petri nets during the 
design of UML version 2.0 confirms the similarities.  

The proposed translation bridge between two description techniques 
meets better support in hardware behavioural modelling with verification and 
synthesis possibilities. Transformation from UML 2.x into Petri nets enables 
ease and efficient connection between two mentioned technologies making 
hardware behavioural modelling less complex. Presented method allows to 
combine the advantages of both types of graphical system specification.  

The paper is structured as follows. Section 2 introduces to the topic of 
transformation from UML activity diagrams into control interpreted Petri nets. 
Section 3 outlines the necessity of hierarchy in behavioural specification of 
modern systems, presents transformation complexity of hierarchical structures 
and presents solution of macroplace representation problem in transformation 
from Petri nets to activity diagrams. In Section 4 proposition of control process 
behavioural modelling system is presented. Section 5 concludes the paper. 

 



Transformation of UML 2.x Activity Diagrams into Control Interperted Petri Nets… 89 

 
2. TRANSFORMATION 
 

A novel transformation method of logic controllers specification from 
hierarchical UML activity diagrams into hierarchical control interpreted Petri nets 
has been proposed [9]. There have been described some transformation 
techniques in literature so far [4, 13]. However, available solutions do not cover 
all necessary aspects of control process behavioural modelling. Most of them 
cover UML and Petri nets in software and business behaviour specification. 
Since UML 2.0 [16], where activity diagrams where designed inspired by Petri 
nets, the transformation is more natural. The similarity fact also makes it easier 
to combine both technologies into one powerful engineering engine.  

In proposed solution transformation is realised due to strictly defined 
rules [8]. Actions of activity diagram correspond to transitions of Petri net. It is 
different from the approach proposed in [4] where actions are transformed to 
places. Actions of activity diagram are realised one after the other and there is 
no defined waiting place between two actions. Whenever a process has to wait 
between two actions, it is some kind of stopped between them without any 
graphic marking. Therefore there is no graphical representation in UML activity 
diagram of Petri net’s place. Nevertheless, the lack of this element does not 
close the way to transformation. Input and output signals which are very 
important elements of control process descriptions are also provided and 
transformed between two discussed technologies.  

 
 
 

3. HIERARCHY 
 

System design decomposition and hierarchical representation of systems 
is a very important issue in large control systems. Due to the fast technological 
progress in XXI century, especially in computer sciences, the designs every day 
become larger. This aspect enforces decomposition of complex designs in 
hierarchical structures concerning autonomous segments of the design. Thus, 
to fulfil the discussed requirement the transformation has to handle complex 
hierarchical structures both in UML activity diagrams and Petri nets. 

 
 

3.1. Transformation complexity 
 

Hierarchical transformation rules are a little bit more complex than simple 
diagrams transformation. In contrast to UML activity diagrams, Petri nets have 



90 M. Grobelny 

two types of hierarchy representation. There are macrotransitions and 
macroplaces [10] (see fig. 1). Possible hierarchical transformation scenarios are 
shown in figure 2. 

 
a)    b)          c) 

 
Fig. 1. Hierarchical structures representation in UML activity diagrams (a) 
and Petri nets (b), (c) 

 

Fig. 2. Possible transformations  
of hierarchical structures 

 
 

Macroplaces correspond to places of Petri net and are representing static 
macrostates of modelled system. Macrotransitions correspond to transitions of 
Petri net and are representing big dynamic change of modelled system which 
can be divided into elementary actions. A macrotransition can be simply 
transformed into complex action called in activity diagrams an activity (see 
figure 1 and figure 2). It is one-to-one correspondence and the transformation of 
the type of hierarchy makes no meaning changes in resulting diagram. 

 
 

3.2. Macroplace problem solution 
 

Due to the fact that there is no representation of place in activity diag-
rams there is also no simple representation of macroplace. Therefore, author 
has proposed more complex process realized by swapping of a macroplace into 
a macrotransition.  



Transformation of UML 2.x Activity Diagrams into Control Interperted Petri Nets… 91 

Macroplace into macrotransition swapping process is based on ex-
pansion of macroplace in existing diagram and surrounding it with two more 
zero-functionality transitions. Such construction can be then enclosed in a 
corresponding macrotransition and then simply transformed to complex activity 
of UML activity diagram. Schematically transformation process of macroplace 
into macrotransition and next into activity is shown in figure 3. 

 

 

Fig. 3. Hierarchical structure transformation paths 
 

Proposed exchange of macroplace into activity of UML activity diagram is 
a four-stage process. In the first phase macroplace is surrounded by zero-
functionality transitions. In the next step macroplace is expanded to regular sub-
net realisation. In such a way obtained diagram afterwards is bundled in macro-
transition. The last fourth step is transformation from macrotransition into UML 
activity. Process of transformation from macroplace into macrotransition seems 
to be simple. Backward transformation is considerably more complex. The first 
question which appears here is when to stop the process. Should it be stopped 
by receiving macrotransition, macroplace with two additional transitions 
(second/grey path in figure 3) or just with a macroplace? Activity which was 
received from macroplace has to be marked to differ it from simple activity 
received from macrotransition. Additional extra transitions added in macroplace 
into macrotransition swapping process have to be marked in a special way to 
remove them in a reverse transformation.  

Also the two additional transitions have to be omitted in process beha-
viour analysis of resulting activity diagram. Both transitions cannot change the 
meaning of analysed process.  

The hierarchical differences of two described technologies make the 
transformation more complex. Although it is very important to provide all 
possible mechanisms to enable easy and efficient technology to combine both 
types of behavioural graphic representation of hardware design. 



92 M. Grobelny 

 
4. CONTROL PROCESS BEHAVIOURAL  
    SPECIFICATION SYSTEM 
 

There has been proposed a system for specifying complex control pro-
cess behavioural properties. Figure 4 describes basic idea of such a system. 
The main goal is to ensure full support for designs specified both with control 
interpreted Petri nets and UML activity diagrams. Designers could use in 
parallel both techniques in one project. The system can be a bridge between 
two technologies. Transformation between control interpreted Petri nets and 
UML activity diagrams will be the basic functionality of described solution. 
Moreover, usage of commonly used file formats (like e.g. PNML, PNSF3 or 
XMI) enables preparation of specification diagrams in well-known software 
environments. UML diagrams could be then prepared in Altova UModel [3] software 
and modified (after transformation in described system) in WoPeD [15]. 
Furthermore there will be also a possibility to use VHDL or Verilog code 
generation to prepare designed project for simulation and synthesis.  

 
 

 

Fig. 4. Control process designing system 
 

System provides possibility to export data to formats provided by Petri 
net formal verification tools. One of the possibilities to formally verify the 
correctness of designed logic controller behavioural specification could be 



Transformation of UML 2.x Activity Diagrams into Control Interperted Petri Nets… 93 

model checking [5]. There are mechanisms provided for Petri nets to verify 
specifications using NuSMV model checker [8]. Specifications prepared in UML 
activity diagrams could be then transformed to Petri nets and verified. 
Moreover, projects specified in both techniques in the same time could also use 
the NuSMV model checking thanks to transformation of UML part into Petri 
nets. 

 
 

5. CONCLUSIONS 
 

The importance of behavioural modelling phase of logic controller design 
is very high. Proposed solution is provided to build a bridge between two 
behavioural modelling technologies. Moreover, there will be a possibility to 
combine available Petri net analysis techniques with projects constructed using 
UML activity diagrams. Proposed novel approach extends available trans-
formation techniques [4, 13] making them available in hierarchical control 
process description. Additionally usage of existing verification techniques may 
ensure higher quality of project described using UML activity diagrams by 
transforming them into Petri nets and verify using formal methods e.g. model 
checking with NuSMV [8]. Moreover, the transformation technique is going to be 
extended with exception handling mechanisms, which are also very important 
elements of logic controller design. Furthermore, the author’s goal is to deliver 
fully automatic transformation system, which could be a framework for further 
improvements of logic controller behavioural modelling. The automation of 
transformation process is provided to improve usability of described solution.  
System enabling transformation of hierarchical diagrams with exception 
handling will be a fully functional environment for hardware behavioural co-
specification using Petri nets and UML activity diagrams with large designs. On 
the other hand, it will improve communication and coexistence of specialists 
using in the same project two different specification techniques. On the other 
hand usage of well-known verification techniques may significantly improve 
quality of specified control process.  
 
 
LITERATURE 

 

1. Adamski M., Karatkevich A., Wegrzyn M. (ed.): Design of embedded control systems, 
Springer 2005 (USA).  

2. Adamski M., Chodan M.: Modelowanie ukladow sterowania dyskretnego z wykorzystaniem 
sieci SFC, Wydawnictwo Politechniki Zielonogorskiej, 2000 (in Polish).  

3. Altova GmbH homepage: http://www.altova.com.  



94 M. Grobelny 

4. Basile F., Chiachio P., Del Grosso D.: Modelling automation systems by UML and Petri 
Nets, Proceedings of the 9th International Workshop on Disscreet Event Systems, 
Goteborg, Sweden, 2008, pp. 308-313.  

5. Clarke E.M., Grumberg O., Peled D.A.: Model checking, The MIT Press, 1999.  

6. David R., Alla H.: Petri Nets & Grafcet. Tools for modeling discrete event systems, Prentice 
Hall, 1992. 

7. Girault C., Valk R.: Petri Nets for Systems Engineering, A Guide to Modelling, Verification 
and Applications, Springer-Verlag Berlin Heidelberg, 2003.  

8. Grobelna I., Grobelny M., Adamski M.: Petri Nets and activity diagrams in logic controller 
specification – transformation and verification, Mixed Design of Integrated Circuits and 
Systems – MIXDES 2010, pp. 607-612.  

9. Grobelny M., Grobelna I.: Diagramy aktywnosci jezyka UML i sieci Petriego w systemach 
sterowania binarnego вЂ“ od transformacji do weryfikacji, Pomiary Automatyka Kontrola, 
nr 10, 2010, pp. 1154-1158.  

10. Karatkevich A.: Dynamic Analysis of Petri Net-Based Discrete Systems, Springer-Verlag 
Berlin Heidelberg, 2007.  

11. Grobelny M.: A short comparison between UML Activity Diagrams and Petri Nets in 
hardware behavioural modelling, X International PHD Workshop – OWD 2008, Conference 
Archives PTETiS, Vol. 25, pp. 433-436.  

12. Object Management Group homepage: http://www.omg.org.  

13. Staines T.S.: Intuitive Mapping of UML 2 Activity Diagrams into Fundamental Modeling 
Concept Petri Net Diagrams and Colored Petri Nets, 15th Annual IEEE Interna- 
tional Conference and Workshop on the Engineering of Computer Based Systems, 2008, 
pp. 11–200.  

14. Gomes L., Barros J.P.: A. Costa: Modeling formalisms for embedded system design, 
Embedded Systems Handbook, Taylor & Francis Group, LLC, 2006.  

15. WoPeD homepage: http://www.woped.org.  

16. Wrycza S., Marcinkowski B., Wyrzykowski K.: Język UML 2.0 w modelowaniu systemow 
informatycznych, Helion, 2005 (in Polish).  

 
Manuscript submitted 01.06.2011 
 
 

TRANSFORMACJA  
DIAGRAMÓW AKTYWNOŚCI  

UML 2.x DO INTERPRETOWANYCH  
SIECI PETRIEGO STEROWANIA  

W SPECYFIKACJI BEHAWIORALNEJ SPRZĘTU 
 
 

Michał GROBELNY 
 

STRESZCZENIE   Specyfikacja zachowania systemu jest jednym 
z kluczowych elementów procesu projektowania sterowników logi-
cznych. Etap ten odrywa ważną rolę ze względu na fakt definiowania 



Transformation of UML 2.x Activity Diagrams into Control Interperted Petri Nets… 95 

kształtu i sposobu zachowania docelowego produktu. Może ona zostać 
wykonana na wiele sposobów z wykorzystaniem różnych narzędzi 
wspomagających ten proces. Jednymi z technologii, w których istnieje 
możliwość opisu zachowania docelowego urządzenia, są diagramy 
aktywności języka UML i sieci Petriego. Artykuł przedstawia kon-
cepcję transformacji pomiędzy diagramami aktywności języka UML  
a interpretowanymi sieciami Petriego sterowania. Transformacja de-
dykowana jest dla projektów, w których inżynierowie wykorzystuję 
obie wspomniane technologie. Dodatkowo omówiony w artykule system 
do transformacji ma na celu stworzenie mostu pomiędzy obiema tech-
nologiami w pełni automatyzując proces przemieszczania się pomiędzy 
nimi. Umożliwia on także wykorzystanie dodatkowych narzędzi wspo-
magających proces projektowania, takich jak formalna weryfikacji czy 
generowanie kodu w językach opisu sprzętu. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Michał GROBELNY received in July 2007 both his M.Sc.
in computer science from University of Zielona Góra and Diplom-Infor-
matiker from Fachhochschule Giessen-Friedberg (Germany). Currently
he is a Ph.D. student at the Faculty of Electrical Engineering, Computer
Science and Telecommunication at the University of Zielona Góra.
His current research interest is focused on designing microcontroller
systems and using UML and Petri nets for hardware specification. He is
currently also working at a company designing vehicle monitoring
systems with use of GPS and GSM systems. He is a member of Polish
Information Processing Society.  



96 M. Grobelny 

 
 
 
 
 
 

 


