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is made of solid iron (ST-3 B-H characteristic) 
with surface mounted PMs which have the 
shape of cylindrical sections and are magnet-
ized radially. 
A finite element model which considers two 
modifications to the prototype is presented in 
the next sections. The sheet type EP 600-50A 
used previously in the prototype is used rather 
in transformers than in rotating machines. 
Hence, FEA of the BLDC motor uses a differ-
ent kind of stator sheet material, 0.55 mm 
M470-50A steel laminations that is typically 
used in induction motors (Fig.2). The second 
modification is to use different numbers of ro-
tor magnet segments. 

Fig. 2. B-H curve of stator core (M470-50A) 
and rotor core (ST3) materials 

The winding used in the BLDC motor is fed 
with a rectangular current waveform in the 120 
deg. conduction mode, thus only two phases 
can be supplied simultaneously. Fig.3 shows 
the distributed integral three-phase double-
layer winding used in the motor. 

Fig. 3. Diagram of the three phase double-
layer distributed winding 

The presented prototype (Fig.1) is constructed 
for low-speed operation with a low number of 
turns per phase (Nt=5). Additionally, the stator 
has small slot openings. The structure of the 
BLDC motor produces low eddy – current loss 
in the magnets and in the rotor of up to several 
percent relative to mechanical power. 

3. Losses determination  

3.1. Iron losses 

Iron loss determination requires knowledge of 
the magnetic material characteristics for all of 
the different magnetic motor components. Iron 
losses comprise three components: eddy-
current loss, hysteresis loss and excess loss [2, 
3, 6]. Hysteresis loss is an effect that occurs 
within the ferromagnetic materials. Hence, ma-
terial selection is minimising core loss. 
Various methods have been proposed in the lit-
erature to calculate iron loss [2, 3, 6-9]. One of 
these methods is the modified Steinmetz equa-
tion presented in [7, 8], that predicts losses 
when waveforms are non-sinusoidal. In the 
case of sinusoidal excitation (which is typical 
for form-factor-controlled Epstein frame meas-
urements), the specific core losses WFe in W/m3 
can be expressed by the theory of the modified 
Bertotti equation [9]: 
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where f  is the fundamental frequency, Bm the 
peak value of the magnetic flux density,  the 
conductivity of the material, d the thickness of 
the lamination, kh the hysteresis coefficient, ke 
is the excess loss and kf the fill factor coeffi-
cient. 

Generally, the manufacturer of the magnetic 
sheets provides the value of iron loss in watts 
per kilogram for given values of magnetic flux 
density and frequency. Based on this 
knowledge the loss coefficients (ke, kh) can be 
identified. These coefficients are used to com-
pute iron losses and are reported in Table I for 
M470-50A lamination. 
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Table I. Material Coefficients for M470-50A 
Lamination. 

Hysteresis 
coefficient kh 143 Ws/T2/m3 

Electric 
conductivity  2.5641e6 (m)-1 

Lamination 
thickness d 0.5e-3 m 

Excess loss 
coefficient ke 2.6 W/(Ts-1)3/2/m3 

Packing 
factor kf 0.96 - 

Mass densi-
ty   7760 kg/m3 

3.2. Eddy-current loss in rotor and PMs 

In BLDC motors, iron loss appears not only in 
the stator but also in the rotor. The rotor of the 
analysed machine is made of a solid iron. In 
this case the iron losses are purely the eddy-
current losses. 
Calculations of the eddy-currents in the PMs is 
based on the calculation of the distribution of 
magnetic flux density. Hence, this loss is 
caused by: winding structure, slot opening size 
and converter switching frequency. A concen-
trated winding produces a large amount of cur-
rent linkage harmonics generated by flux densi-
ties travelling across the PMs, causing eddy-
currents [10]. This effect can be reduced if the 
machine uses distributed windings such as the 
analysed motor. In addition, large stator slot 
openings cause flux density variations that in-
duce eddy-currents in the PMs. In this paper the 
rotor iron and magnet loss is computed sepa-
rately and the Joule losses of PMs and rotor 
yoke are calculated by Cedrat’s Flux3D [11] 
and is expressed as: 

 
VV

PM dVJdVW 2JΕ [W] (2) 

Where E is the electric field strength, J is the 
current density within the PM and   is the re-
sistivity of the PM (1.6·10-6 Ωm). 

Building the rotor and magnets into multiple 
segments has been shown to significantly re-
duce eddy-current loss [12]. In the analysis per-
formed here segmentation into up to six seg-
ments is considered (Fig. 3). 

The magnetic parts can be glued together. The 
thickness of the glue is assumed be 0.1mm in 
each bond. 

Fig.3. Magnet pole segmented into 6 pieces 
over the active length 

4. Investigation of BLDC motor with 
magnet segmentations 

The considered motor has a rotational sym-
metry. Based on analysis of magnetic flux dis-
tribution, it is sufficient to limit the model to 
one-sixth of the whole motor volume due to the 
inherent symmetries in both the rotor and sta-
tor. Additionally, the 3D mathematical model 
of a BLDC motor, takes into account the end-
winding region giving a more accurate solution 
with regards to loss computing (Fig.4). The 
end-winding leakage has influence on magnetic 
field distribution in the ends of active length. 
The influence of the end-winding leakage can 
be weakened, if the rotor length is smaller than 
the stator length (such as in analysed machine). 

Fig.4. The 3D FE model, 1/6  of the machine 
is modelled, by polar and rotational symmetry 

In Fig. 5, the no-load voltage waveform is 
computed without magnet segmentation and 
when magnet segmentation is employed. The 
EMF is slightly lower owing to the smaller 
amount of magnets mass. As the number of 
segments decreases, the maximum decrease in 
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value of EMF only about 0.7%. The ripples in 
the EMF waveforms are due to the interaction 
of the rotor design with the stator teeth. Magnet 
segmentations cause the EMF ripple to in-
crease, accordingly the torque ripple behaves in 
the same manner. 

Fig. 5. EMF vs. rotor position in mechanical 
degree due to segmentation magnet at 1000 rpm 

Calculation of the torque developed by the mo-
tor is performed by the virtual work method 
[11]. The motor is requiring low level of the 
torque ripple for low vibration and noise. As it 
is shown in Fig. 6 the analysed machine pro-
duces significant torque pulsations. 

a) 

b) 

Fig. 6. Electromagnetic torque (a), cogging 
torque (b) vs. rotor position 

Cogging torque minimization of BLDC motors 
is becoming necessary since its low torque is 
required in industrial application. In papers  
[4, 5] the authors proposed methods to reduce 
cogging torque. Electromagnetic torque and 
cogging torque is only slightly influenced by 
the segmentation of the magnets (Fig. 6a-b). 
The difference in the peak value of cogging 
torque between non segmented magnets and 
when the magnets are segmented into 6-pieces 
is approximately 5%. The cogging torque has  
a tendency to increase due to the rotor con-
struction, and that is affected by the magnet 
segmentation. Hence, the air-gap between seg-
mented magnets should be as small as possible. 
The iron loss generated in the laminated core 
pack and in the rotor yoke are presented in  
Fig. 7. Eddy-current loss generated in the rotor 
yoke is the result of small circulating currents 
that are induced when the flux density changes 
in the magnetic material. 

Fig. 7. Iron loss of stator and rotor core vs. 
number of magnet segments at open circuit 
and short circuit 

The short-circuit iron losses are less than the 
open-circuit losses due to the weakening at the 
electromagnetic field by the current flowing in 
the winding. This effect can be seen in Fig. 8 
which presents the flux in the air-gap. The air-
gap flux under open circuit conditions keeps 
the flux density profile more rectangular,. Fig. 
8 shows also that under short circuit the flux 
density form is extremely deformed. Hence, the 
iron losses under short circuit are less than un-
der open circuit. Table II presents a comparison 
of the calculated iron loss and magnet loss un-
der open-circuit and short-circuit conditions for 
a solid magnet (N=1), two (N=2), four (N=4) 
and six magnet segments (N=6). 
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Fig. 8. Flux density in the air-gap for non seg-
mented magnet 

Table II. Average no-load iron loss of the modi-
fied machine at 1000rpm. 

Motor version 

Rotor iron loss [W] Stator iron loss [W] 

Short-
circuit 

Open-
circuit 

Short-
circuit 

Open-
circuit 

N=1 (proto-
type) 

2.06 2.84 7.16 8.38 

N=2 2.18 2.75 7.47 8.56 

N=4 2.15 2.71 7.42 8.51 

N=6 2.12 2.65 7.38 8.46 

In general the rotor eddy-current loss in PMs is 
relatively small compared to the iron loss. 
However it may cause significant heating of the 
PMs, due to the relatively poor heat dissipation 
of the rotor that may result in partial irreversi-
ble demagnetisation of PMs. 
As in Fig. 9, the PM no-load eddy-current 
loss is not the dominant part of PM eddy-
current losses in the discussed machine with 
small slot openings and distributed windings. 
For the maximum number of magnet seg-
ments (N=6), the loss is reduced by 66% un-
der short-circuit operation. Hence a reduction 
in eddy-current loss due to magnet segmenta-
tion can be more beneficial for machines 
which tend to produce more eddy-current loss 
[1, 8], such as: machines using a high num-
bers of turns per phase especially machines 
with concentrated windings and/or machines 
operated at high speed etc. 
Table III and Fig. 10 show the calculated eddy-
current distribution due to the number of seg-
ments. The eddy-current losses in the BLDC 
motor are reduced by dividing the magnets into 
segments. 

Fig. 9. Eddy-current loss in the PMs vs. seg-
mentation number 

 
a) 

b) 

c) 

d) 

Fig. 10. Eddy-current loss distribution in the 
PMs for N=1 (a), N=2 (b), N=4 (c) and N=6 (d) 
at 1000rpm and short-circuit 
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Table III. Average no-load PM loss of the mod-
ified machine at 1000rpm 

Motor 
version 

PM loss [%] rela-
tive to non-

segmented mag-
nets 

PM loss [W] 

Short-
circuit 

Open-
circuit 

Short-
circuit 

Open-
circuit 

N=1 
(proto-
type) 

100% 100% 0.0452 0.0122 

N=2 77% 100% 0.0349 0.0126 

N=4 51% 92% 0.0223 0.0112 

N=6 34% 81% 0.0162 0.0098 

5. Conclusion 

The computed PM eddy-current loss in the con-
sidered machine with the segmented PM poles 
is significantly lower (about 66% under short 
and 19% under open circuit) compared to the 
machine without the segmentation used; how-
ever the effect of segmentation is to generate 
almost the same range of iron losses (the loss at 
short and open circuit was separated by calcu-
lating the stator loss and PMs eddy-current 
losses). The proposed approach to reduce eddy-
current loss is most beneficial for BLDC ma-
chines with high number of turns per phase, 
concentrated windings or machines with a high 
fundamental frequency, e.g. high speed opera-
tion and/or high pole number, machines with 
large slot openings and a high power density. In 
this case, axial-segmentation of the magnet re-
duced loss, and kept the same range of EMF 
value and did not increase significantly a cog-
ging torque. 
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