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RELUCTANCE MOTOR MATHEMATICAL MODEL IN NATURAL 
REFERENCE FRAME USING HAMILTONIAN EQUATIONS – 

SIMULATIONAL ANALYSIS 
 

MODEL MATEMATYCZNY SILNIKA RELUKTANCYJNEGO W NATURALNYM 
UKŁADZIE ODNIESIENIA WYKORZYSTUJĄCY RÓWNANIA HAMILTONA – 

BADANIA SYMULACYJNE 
 

Abstract. In the paper a novel mathematical model of electromechanical actuator is presented. It is based on 
application of Hamiltonian equations in the description of electromechanical energy conversion. It results in 
employment of flux linkages as state variables in the state space equations. A 3-phase wye connected stator 
winding without a neutral wire is considered in detail as the most important connection schema in practical 
applications. The procedure can be generalised to any number of phases and arbitrary connection schema. To-
pology-based approach is used in the model implementation. Eddy currents and hysteresis phenomenon are 
neglected in formulation of the model to enable application of Hamiltonian description. Simulation analysis is 
performed using data from FEM model of reluctance cageless motor. 
 

1. Introduction 

In the paper a novel mathematical model of elec-
tromechanical actuator is presented. It is based 
on application of Hamiltonian equations in the 
description of electromechanical energy conver-
sion which results in employment of flux linkag-
es as state variables in the state space equations 
[12][13]. For simplicity of description only  
a 3-phase wye connected stator winding without 
a neutral wire is considered in detail. Though the 
simplest, this connection scheme is the most im-
portant from practical viewpoint [2]. The proce-
dure can be extended to any number of phases 
and an arbitrary connection schema. In formula-
tion of the model eddy currents and hysteresis 
phenomenon were neglected to enable applica-
tion of state-space description [12]. 
The model is formulated in natural (phase) ref-
erence frame. The circuit voltage equations are 
established using Kirchhoff’s equations with 
flux linkages as state variables which is  
a result of Hamiltonian approach. The most im-
portant problem arising in this approach is 
evaluation of currents as function of flux link-
ages in multidimensional variable space [3] 
[13]. The proposed solution is based on triangu-
lation of databases (obtained using FEM [4]) 
and application of local linear (affine) homeo-
morphism between variable spaces [6] (of cur-
rents and flux linkages). In algebraic topology 
this approach is defined as simplical approxi-
mation [1]. 

2. An electromechanical actuator model 
using Hamiltonian equations 

Application of Hamiltonian equations in analy-
sis of electromechanical actuators is very un-
common although it is equivalent to Lagrange 
equations [14][13][12][11]. In case of electro-
mechanical actuators potential advantage of 
Hamiltonian description is the canonical form 
of these equations [13]. The state of the system 
can be uniquely described using the so-called 
Hamiltonian H [13]: 

pkmag EEEH   (1)

where Emag – magnetic field energy, Ek – kinetic 
energy of mechanical part of the system,  
Ep – potential energy of the system. When  
a machine with m insulated phase windings  
A, B,…, M is considered the magnetic field en-
ergy can be described by the following formula 
[13]: 
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where  – angular position of the rotor 

(Fig.2),  T
MjAph  ,...,,...,Ψ - vector of 

phase flux linkages,  T
MjAph iii ,...,,...,i - 

vector of phase currents. 
When a number of w holonomic constraints are 
imposed on the system the number of degrees 
of freedom can be reduced [14][12]. The state 
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of the system is then described by N+1 inde-
pendent canonical equations where N = m–w: 

0



 j
j

j Q
q

H

dt

d   (3a)

 1,...,1  Nj , with additional N+1 equa-
tions defining relationship between generalised 
momenta and generalised velocities: 

j
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  (3b)

where    TT
Nj KK Ψλ ,,...,,...,, 1   , 

K – angular momentum,Ψ - vector of general-
ised flux linkages, 

  ],[,...,,...,, 1
T
e

T
Nj qqq qq   , eq  – vector 

of generalised electrical coordinates of the sys-
tem (charges), Qj – j-th component of general-
ised non-potential force acting in the system, 

   TT
Nj iii iq ,,...,,...,, 1  



,  – angular 

velocity, i  – vector of generalised electrical ve-
locities (currents). 
When there are no potential energy elements in 
the system the Hamiltonian can be rewritten in 
a simpler form: 

J

K
EKH mag 2

),(),,(
2

 ΨΨ   (4)

with magnetic field energy definition for an ar-
bitrary variation of the flux linkages (Fig.10) 
[12]: 

const
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Ψ

0

ΨiΨ),(  (5) 

In the matrix form the equation set (3) can 
be written separately for electric and mechani-
cal degrees of freedom: 
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where ),( Ψi   is the function defining currents 

as function of rotor angular position  and gen-

eralised electric momenta Ψ  (flux linkages);  
u – generalised external electric forces (voltag-
es); R – resistance matrix;  
Te – electromagnetic torque; Tm – mechanical 
load torque. Equation set (6) can be presented 
in a form of block diagram shown in Fig.1. 

 
Fig.1. Block diagram of an electromechanical 
actuator mathematical model using Hamiltoni-
an equations 

3. Application of Kirchhoff’s equations 

Standard connection schemas for a 3-phase 
(m=3) reluctance motor are shown in Fig.2 
[2][7]. For each of them the Hamiltonian equa-
tion (6a) can be obtained using Kirchhoff’s 
equations. 
Therefore, for each schema its voltage equation 
can be written in two forms (Eq.7): 
 Kirchhoff’s form – using phase variable de-

scription; denoted by (K.), 
 Hamiltonian form – using generalised varia-

ble description; denoted by (H.). 

In case of the first two connection schemas 
(wye with neutral wire, delta) number of de-
grees of freedom is unchanged and resistance 
matrices are diagonal, equal to the phase re-
sistance matrix. The generalised variables in 
case of wye connection with neutral wire are 
the same like phase variables (Eq.7a, Fig.2a). In 
case of the delta connection generalised exter-
nal electric forces u1 ,u2 ,u3 are line-to-line volt-
ages eAC , eBA , eCB while all the other general-
ised variables are phase variables (Eq.7b, 
Fig.2b). 
The most interesting case from practical point 
of view is wye without neutral wire (Eq.7c, 
Fig.2c). Application of Hamiltonian approach 
(Eq.6a) shows that: 
 flux linkages AC  ,BC  – line-to-line flux 

linkages being linear combinations of phase 
flux linkages AC =A-C, BC =B-C are 
generalised electric momenta 1  ,2 , 
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 voltages eAC  ,eBC  – line-to-line voltages being 
linear combinations of phase voltages 
eAC =eA-eC, eBC =eB-eC are generalised external 
electric forces u1 ,u2 , 

 currents iA, iB – being simultaneously loop 
and phase currents are generalised electric ve-
locities i1, i2, 

 resistance matrix is symmetric but non-
diagonal. 

a) 

 

b) 

 

c) 

 

Fig.2. Schematic representations of the reluc-
tance motor for different connection schemas: 
a) wye with neutral wire, b) delta,c) wye with-
out neutral wire 

The forms voltage equations are: 

 for wye with neutral wire (w=0, N=m) 
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 for delta (w=0, N=m) 
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 for wye without neutral wire (w=1, N=m-1=2) 
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The 3-phase wye connected stator winding 
without neutral wire will be considered in detail 
in the further description. 

4. Algorithm for modelling of current-
flux linkage spatial characteristics 

Evaluation of multidimensional function 
),( Ψi  in Eq.6a is the most important task in 

application of Hamiltonian description to elec-
tromechanical actuators [12][13]. 
In previous papers it was achieved with applica-
tion of uniform databases along with appropri-
ate approximation [3][4]. It employed „gridda-
ta3” numerical procedure [9]. The drawback of 
this method is creation of large number of NaN 
(Not-a-Number) entries in databases [3]. 
In the paper a different methodology is pro-
posed. It employs newly introduced Tri-
Rep/DelaunayTri structures in Matlab’2009 [9]. 
Those entities enable application of topology-
based evaluation methodology using local 
piece-wise linear (affine) homeomorphism be-
tween current and flux linkage spaces [6]. In 
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algebraic topology such transformation is de-
fined as simplical approximation [1]. 
 

I k=I 1 

Fig.3. Current point set for  =1 
 
Numerical data for the primary databases used 
in description (Fig.3) were obtained with the 
Finite Element Method for a real reluctance 
cageless motor [4][5][10]. The structure of the 
databases is related to the evaluation methodol-
ogy which can be performed either using FEM 
or measurement [4][8]. In order to define the 
databases the following sets are used: 
 the position set  ={1,..., k,…, K} composed 

of K points where 1=0 [rad],K=1+2/p to 
account for symmetry, p – number of pole pairs. 
Their choice depends on assumed precision of 
the model (e.g. if the model accounts only for 
the main space harmonic or also for slotting ef-
fects etc. [13]), 

 for each angle k a current set I k com-
posed of P(k) points is defined  
I k = {i1, … ip, …, iP(k)} where ip EN (Fig.3). 
The I k set belongs to current subspace RIk 
EN. Choice of I k depends on range of satura-
tion and assumed maximum current of the 
device. 

Dimension N of Euclidian space EN is equal to 
the number of generalised (independent) varia-
bles which is N=2 in the presented example. 

5. Methodology for  = const 

Applying the FEM calculation at an arbi-
trary angle k one obtains two sets: 
 a flux linkage point set  k = {1, … p, …, 
P(k)}, p EN, (Fig.4), 

 an electromechanical torque set Te(k) = {Te,1, 
… Te,p, …, Te,P(k)}. 

The  k set belongs to flux linkage subspace 
R k  EN. 

 k= 1 

Fig.4. Flux linkage point set for  =1 

As eddy currents and hysteresis phenomenon 
are neglected in the model, thus the function re-
lationship f k between the above mentioned sub-

spaces f k: RI k on  R k is a homeo-
morphism [1]. For such a function a local linear 
approximation fA

k can be defined [6]: 
 its domain is RI k defined with the help of tri-

angulation T k, which consists of  
N-simplexes 

jI k ,
Δ which are triangles for ana-

lysed case (N=2, Fig.5) , 
 fA

k(ip) = p , 
 for an arbitrary j-th N-simplex 

jI k ,
Δ  T k 

function fA
k(i) is affine on 

jI k ,
Δ  [1][6]. 

| T 1 |= RI 1 

Fig.5. Current triangulation for  =1 

For a homeomorphism f k there exists an inverse 

function f -k: R k on  RI k [6]. It enables 
a definition of its local linear approximation fA

-k 
which has the following properties (Fig.7): 
 its domain is R k defined with the help of 

triangulation T -k (Fig.6), 
 fA

-k(p)= ip , 
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 for an arbitrary j-th N-simplex 
jk ,

Δ  T -k 

function fA
-k(i) is affine on 

jk ,
Δ . 

| T -1 |= R 1 

Fig.6. Flux linkage triangulation for  =1 
 

 

Fig.7. Local invertible affine transformations 
on simplexes (maps) 

Exemplary data are shown in the Figs.8÷10. 

AC (RI1) 

Fig.8. Flux linkage AC  on triangulation 
 

iA(R 1) 

Fig.9. Current iA on triangulation 

Emag(R 1) 

Fig.10. Energy Emag on triangulation 

6. Exemplary results for  = const 

Numerical simulations were performed for  
3-phase symmetrical phase voltages of magnitude 
Uph=30/60 [V], frequency f=10 [Hz], (t)=0°, for 
initial conditions: AC(0)=BC(0)=0 [Wb]. Re-
maining model parameters were: rf=13 [] – 
phase resistance, Tm = 0 [Nm]. J =0.01 [kgm2],. 
Simulation time in SIMULINK is 0.25[s]. Results 
are shown in Fig.11,12. Reference model used for 
comparison is a uniform database model [3]. 

7. Conclusions 
Results in Fig.11,12 show that compatibility of 
results both for current and torque evaluation is 
very good. It is especially important in case of 
electromagnetic torque as values for proposed 
model (with triangulated databases) are inter-
nally evaluated using algorithm based on Eq.6d 
while values for reference model (with uniform 
databases [3][4]) were obtained using approxi-
mation of FEM results. 
Simultaneously the proposed model overcame 
the main drawback of the reference model 
which was limited active region [3]. It often re-
sulted in Loss of Stability due to overflow of 
the database range (LofS., Fig.11). 

a)
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b) 

 
Fig.11. Current iA plots: a) 30 [V], b) 60 [V] 

a)

 
b)

 

Fig.12. Torque Te plots: a) 30 [V], b) 60 [V] 

During conference results for =const, =var 
will be presented. 
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