PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of thermal treatments on the mechanical and electrical properties of nickel-coated carbon fibre composites

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nickel-coated carbon fibre (NiCCF) composites may find technological applications within many industrial sectors, including: laptop computers, automotive and military industries. Typically, these applications require that NiCCF be subjected to extensive material processing; thus, optimization of mechanical (and electrical) properties for this material at the stage of its production is of significant importance. The present paper reports the application of specific, high-temperature heat treatments to laboratory-produced 12K50 NiCCF material, carried-out in order to improve the ductility and interfacial adhesion of electrodeposited Ni coating to the surface of carbon fibre substrate.
Rocznik
Strony
16--19
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
  • Department of Chemistry, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Plac Łódzki 4, 10-957 Olsztyn, boguslaw.pierozynski@uwm.edu.pl
Bibliografia
  • 1. Chung, D.D.L. (2004). Electrical applications of carbon materials. J. Mater. Sci. 39(8), 2645-2661. DOI: 10.1023/B:JMSC.0000021439.18202.ea.
  • 2. Markham, D. (2000). Shielding: quantifying the shielding requirements for portable electronic design and providing new solutions by using a combination of materials and design. Mater. Design 21(1), 45-50. DOI: 10.1016/S0261-3069(99)00049-7.
  • 3. Tzeng, S.S. & Chang, F.Y. (2001). EMI shielding effectiveness of metal-coated carbon fiber-reinforced ABS composites. Mater. Sci. Eng. A 302(2), 258-267. DOI: 10.1016/S0921-5093(00)01824-4.
  • 4. Chung, D.D.L. (2001). Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39(2), 279-285. DOI: 10.1016/S0008-6223(00)00184-6.
  • 5. Fu, S.Y., Lauke, B., Mader, E., Yue, C.Y. & Hu, X. (2000). Tensile properties of short-glass-fiber- and short-carbon-fiber-reinforced polypropylene composites. Composites: Part A 31(10), 1117-1125. DOI: 10.1016/S1359-835X(00)00068-3.
  • 6. Donnet, J.B. & Bansal, R.C. (1990). Carbon Fibers. New York, USA: Marcel Dekker, Inc.
  • 7. Soens, L.J. (1987). U.S. Patent No. 4,664,971. Washington, D.C.: U.S. Patent and Trademark Office.
  • 8. Adriaensen, L. & Verhaeghe, F. (1988). U.S. Patent No. 4,788,104. Washington, D.C.: U.S. Patent and Trademark Office.
  • 9. Soens, L.J. (1995). U.S. Patent No. 5,397,608. Washington, D.C.: U.S. Patent and Trademark Office.
  • 10. Cogswell, F.N., Hezzell, D.J. & Williams, P.J. (1985). U.S. Patent No. 4,559,262. Washington, D.C.: U.S. Patent and Trademark Office.
  • 11. Cogswell, F.N., Hezzell, D.J. & Williams, P.J. (1991). U.S. Patent No. 5,019,450. Washington, D.C.: U.S. Patent and Trademark Office.
  • 12. Cogswell, F.N., Hezzell, D.J. & Williams, P.J. (1993). U.S. Patent No. 5,213,889. Washington, D.C.: U.S. Patent and Trademark Office.
  • 13. Iyer, S., Dzal, L.T. & Jayaraman, K. (1992). U.S. Patent No. 5,102,690. Washington, D.C.: U.S. Patent and Trademark Office.
  • 14. Working, D. (1993). U.S. Patent No. 5,213,843. Washington, D.C.: U.S. Patent and Trademark Office.
  • 15. Bellemare, D.J. (1997). U.S. Patent No. 5,639,307. Washington, D.C.: U.S. Patent and Trademark Office.
  • 16. Hexcel Corporation. HexTow™ AS4C Carbon Fiber. Product Data. Retrieved April 21, 2010, from http://www.hexcel.com.
  • 17. Lowenheim, F.A. (2000). In M. Schlesinger & M. Paunovic (Eds.), Modern Electroplating (4th Ed.). New York, USA: John Wiley & Sons, Inc.
  • 18. Di Bari, G. (2002). Nickel plating. Metal Finishing 100(1), 257-274. DOI: 10.1016/S0026-0576(02)82027-X.
  • 19. Pierozynski, B. & Smoczynski, L. (2008). Electrochemical corrosion behavior of nickel-coated carbon fiber materials in various electrolytic media. J. Electrochem. Soc. 155(8), C427-C436. DOI: 10.1149/1.2936994.
  • 20. Ulcay, Y. & Altun, S. (2004). Effects of gamma irradiation on some mechanical properties of novoloid fibers. Fibers and Polymers 5(2), 156-159. DOI: 10.1007/BF02902931.
  • 21. ASTM Standards. (2010). Standard test method for tensile properties of yarns by the single-strand method. ASTM D2256/D2256M-10e1. ASTM International. West Conshohocken (PA). DOI: 10.1520/D2256_D2256M-10E01.
  • 22. Tzeng, S.S. (2006). Catalytic graphitization of electroless Ni-P coated PAN-based carbon fibers. Carbon 44, 1986-1993. DOI: 10.1016/j.carbon.2006.01.024.
  • 23. Zhou, H., Yu, Q., Peng, Q., Wang, H., Chen, J. & Kuang, Y. (2008). Catalytic graphitization of carbon fibers with electrodeposited Ni-B alloy coating. Mater. Chem. Phys. 110, 434-439. DOI: 10.1016/j.matchemphys.2008.02.033.
  • 24. Maldonado-Hodar, F.J., Moreno-Castilla, C., Rivera-Utrilla, J., Hanzawa, Y. & Yamada, Y. (2000). Catalytic graphitization of carbon aerogels by transition metals. Langmuir 16(9), 4367-4373. DOI: 10.1021/la991080r.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0059-0053
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.