PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Corona current concept in lightning return-stroke models of engineering type

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A role of radial corona current in a lightning discharge is discussed in the paper. It is shown that the corona current concept previously introduced by Cooray for lightning return stroke models of distributed-current-source (DCS) type, and later, by Maslowski and Rakov for lumped-current-source (LCS) type models enables to show duality between these two types of models. Further, it is demonstrated that the corona current is useful during consideration of dynamics of the lightning-channel corona sheath. As an example of application of presented approach a relaxation model of charge motion in the corona sheath is analysed together with plots which show the rate of expansion and shrinkage of the lightning corona sheath on both microsecond and millisecond time scales.
Rocznik
Strony
177--188
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
Bibliografia
  • [1] Bajorek J., Masłowski G., Modelowanie systemów ochrony urządzeń elektrycznych i elektronicznych przed piorunowym impulsem elektromagnetycznym. Folia Scientiarum Universitatis Technice Resoviensis nr 214, Elektrotechnika 26: 35-42 (2004), (in Polish).
  • [2] Rakov V.A., Uman M.A., Review and evaluation of Lightning Return Stroke Models Including Some Aspects of Their Application. IEEE Transaction on EMC 40(4) (1998).
  • [3] Agrawal A.K., Price H.J., Gurbaxami S.H., Transient response of multiconductor transmission lines excited by a nonuniform electromagnetic field. IEEE Trans. Electromagn. Compat. 22: 119-129 (1980).
  • [4] Cooray V., On the concepts used in return stroke models applied in engineering practice. IEEE Trans. Electromagn. Compat. 45: 101-108 (2003).
  • [5] Maslowski G., Rakov V.A., A study of the lightning channel corona sheath. J. Geophys. Res. 111 (2006), D14110, DOI: 10.1029/2005 JD006858.
  • [6] Masłowski G., Rakov V.A., Equivalency of lightning return stroke models employing lumped and distributed current sources. IEEE Trans. Electromagn. Compat.: 123-133 (2007).
  • [7] Rakov V.A., Uman M.A., Lightning: Physics and Effects. Cambridge University Press, 2003.
  • [8] Baum C.E., Baker L., Analytic return-stroke transmission-line model. (Ed.) Gardner R.L. [in:] Lightning Electromagnetics. New York, Hemisphere: 17-40 (1990).
  • [9] Kodali V., Rakov V.A., Uman M.A. et al., Triggered lightning properties inferred from measured currents and very close electric fields. Atmospheric Research 75: 335-376 (2005).
  • [10] Heckman S.J., Williams E.R., Corona envelopes and lightning currents. J. Geophys. Res. 94: 13287-13294 (1989).
  • [11] Wagner C.F., Hileman A.R., The lightning stroke (1). AIEE Trans. 77: 229-242 (1958).
  • [12] Rao M., Bhattacharaya H., Lateral corona currents from the return stroke channel and the slow field change after the return stroke in a lightning discharge. J. Geophys. Res. 71: 2811-2814 (1966).
  • [13] Lin Y.T., Uman M.A., Standler R.B., Lightning return stroke models. J. Geophys. Res. 85: 1571-1583 (1980).
  • [14] Arima I., Watanbe T., Takagi N., Kakihara M., Experimental study of the corona current in lightning return stroke. 9th International Conference on Gas Discharge and their Application. Venice, Italy, 1998.
  • [15] Cebrera V., Cooray V., On the mechanism of space charge generation and neutralization in a coaxial cylindrical configuration. J. Geophys. Res. 38: 187-196 (1992).
  • [16] Cooray V., A model for positive return strokes. 9th International Conference on Electrostatics, Ontario, 1995.
  • [17] Cooray V., A model for subsequent return strokes. J. Electrostat. 30: 343-354 (1993).
  • [18] Cooray V., A model for negative first return strokes in lightning flashes. Physica Scripta 55: 119-128 (1997).
  • [19] Takagi N., Wang D., Watanabe T. et al., Expansion of the luminous region of the lightning return stroke channel. J. Geophys. Res. 103(D12): 14131-14134 (1998).
  • [20] Miki, M., Rakov V.A., Rambo K.J. et al., Electric fields near triggered lightning channels measured with Pockels sensors. J. Geophys. Res. 107: D11-D16 (2002).
  • [21] Gorin B.N., Mathematical modeling of the lightning return stroke. Elektrichestvo 4: 10-16 (1985).
  • [22] Maslowski G., Rakov V.A., Cvetic J., Miki M., An improved model for prediction of the dynamics of lightning channel corona sheath. 20th Int. Zurich Symp. on Electromagnetic Compatibility, Zurich, Switzerland, 2009.
  • [23] Masłowski G., Rakov V.A., Miki M., Electrical structure of the lightning-channel corona sheath. 2010 Asia-Pacific Symposium on Electromagnetic Compatibility, Beijing, April 12-16 2010, Beijing, China: 1224-1227 (2010).
  • [24] Rakov V.A., Dulzon A.A., A modified transmission line model for lightning return stroke field calculations. [in:] Proc. 9th Int. Zurich. Symp. on Electromagnetic Compatibility, Zurich, Switzerland: 229-235 (1991).
  • [25] Thottappillil R., Rakov V.A., Uman M.A., Distribution of charge along the lightning channel: Relation to remote electric and magnetic fields and to return-stroke models. J. Geophys. Res. 102: 6987-7006 (1997).
  • [26] Uman M.A., McLain D.K., Magnetic field of the lightning return stroke. J. Geophys. Res. 74: 6899-6910 (1969).
  • [27] Rakov V.A., Dulzon A.A., Calculated electromagnetic fields of lightning return stroke. Tekh. Elektrodinam. 1: 87-89 (1987).
  • [28] Nucci C.A., Mazzetti C., Rachidi F., Ianoz M., On lightning return stroke models for LEMP calculations. [in:] Proc. 19th Int. Conference on Lightning Protection, Graz, Austria (1988).
  • [29] Bruce C.E.R., The Lightning and Spark Discharges. Nature 147: 805-806 (1941).
  • [30] Heidler F., Traveling current source model for LEMP calculation. Proc. 6th Int. Zurich Symp. On Electromagnetic Compatibility, Zurich, Switzerland: 157-162 (1985).
  • [31] Diendorfer G. Uman M.A., An improved return stroke model with specified channel-base current. J. Geophys. Res. 95(13): 621-44 (1990).
  • [32] Rachidi F., Nucci C.A., On the Master, Uman, Lin, Standler and the Modified Transmission Line Lightning Return Stroke Current Models. J. Geophys. Res. 95: 20389-20393 (1990).
  • [33] Rachidi F., Rakov V.A., Nucci C.A., Bermudez J.L., Effect of vertically extended strike object on the distribution of current along the lightning channel. J. Geophys. Res. 107: ACL 16-1–16-6 (2002).
  • [34] Masłowski G., Rakov V.A., Some inferences from radial electric fields measured inside the lightning-channel corona sheath. IEEE Trans. Electromagn. Compat. (in print).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0059-0019
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.