PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Inteligentne tekstylia o właściwościach termoregulacyjnych. Część II - Enkapsulacja PCM

Autorzy
Identyfikatory
Warianty tytułu
EN
Smart textiles with thermoregulating properties. Part II. Encapsulation of PCMs
Języki publikacji
PL
Abstrakty
EN
The microencapsulation of PCMs involves enclosing them in thin and resilient polymer shells so that the physical state of this material can be changed from solid to liquid and back again within the shells. The utilization of microencapsulated PCMs in textile goods is advantageous since the encapsulation prevents PCM dispersion in the structure, reduces evaporation and reaction of PCMs with the outside environment, provides an increased heat-transfer area and a constant volume, and allows an easy application without affecting other textile properties and a normal fabric-care. In this paper the structural composition, preparation methods and characteristics of the microcapsules are discussed. Microencapsulation is a very time-consuming and complicated chemical process, running over several stages, making the microPCMs very expensive. In addition to microencapsulation of PCMs numerous attempts have been made to contain organic PCMs in certain macrostructures such as polymer matrices or porous materials (silica powder, perlite, expanded graphite). These containment structures are known as form-stable composite PCMs. The preparation and characterization of novel form-stable phase change material (PCM) is presented.
Rocznik
Tom
Strony
36--40
Opis fizyczny
Bibliogr. 55 poz., rys.
Twórcy
  • Instytut Włókiennictwa w Łodzi
Bibliografia
  • 1. Herbig J. A., Microencapsulution i n Encyclopaedia of Polymer Science and Technology, 8, 719-736, New York 1968.
  • 2. Lane G. A., Low temperature heat storage with phase change materials, International Journal Energy Res., 5, 155-160, (1980).
  • 3. Dai X., Shen X., Research on microcapsules of phase change materials. Rare Metals, 25 (6), Supplement 1, 393-399, (2006).
  • 4. Yamagishi,Y., Takeuchi H., Pyatenko A. T., Kayukawa N., Characteristics of microencapsulated PCM slurry as a heat-transfer fluid, AIChE Journal, .45 (4), 696-707, (1999).'
  • 5. Kim J. H., Cho G. S., Thermal storage / release, durability, and temperature sensing properties of thermostatic fabrics treated with octadecane-containing microcapsules. Text. Res. J. 72 (12), 1093-1098, (2002).
  • 6. Sun G., Zhang Z., Mechanical properties of melamine-formaldehyde microcapsules. Journal of Microencapsulation, 18 (5), 593-602, (2001).
  • 7. Choi K., Cho G., Kim P., Cho CH., Thermal storage and mechanical properties of phase change materials on polyester fabrics. Text. Res. J., 74(7) ,292-296, (2004).
  • 8. Su J., Wang L., Ren L., Fabrication and thermal properties of microPCMs: Used melamine-formaldehyde resin as shell material, J. Appl. Polym. Science 101, (3): 1522-1528, (2006).
  • 9. Zhang X. X., Tao X. M., Yick K. L., Wang X., Structure and thermal stability of microencapsulated phase change materials, Colloid Polym. Sci., 282: 330-336,( 2004).
  • 10. Brown R. C., Rasberry J. D., Overmann S. P., Microenapsulated phase-change materials as heat media in gas fluidised beds. Powder Technology, 98, 217-222, (1998).
  • 11. Sarier N., Onder E., The manufacture of microencapsulated phase change materials, suitable for the design of thermally enhanced fabrics, Thermochimica acta, 452, 149-160, (2007).
  • 12. Jin Z., Wang Y., Liu Y., Yang Z., Synthesis and properties of paraffin capsules as phase change materials. Polymer, 49 (12), 2903-2910, (2008).
  • 13. Zhang X., Fan Y., Tao X., Yick K., Crystallization and prevention of supercooling of micro-encapsulated n-alkanes, J. of Colloid and Interface Science, 281, 299-306, (2005).
  • 14. Frere W., Danicher L., Gramain P., Preparation of polyurethane microcapsules by interfacial polycondensation, Eur. Polym, J. 34 193-199, (1998).
  • 15. Choi J., Kwon A., Cho Ch., Microencapsulation of octadecane as phase change material by interfacial polymerisation in an emulsion system, Colloid Polym. Sci., 280, 260-266, (2002).
  • 16. Kim E. U., Kim H. D., Preparation and properties of microencapsulated octadecane with waterborne polyurethane, J. Appl. Polym. Science 96,(5): 1596-1604,(2005).
  • 17. Su J. F., Wang L. X., Ren L., Preparation and characterization of double-MF shell microPCMs used in building materials, J. Appl. Polym. Science 97 (5), 1755-1762, (2005).
  • 18. Yang R., Xu H., Zhang Y., Preparation, physical property and thermal physical property of phase change microcapsule slurry and phase change emulsion, Sol. Energy Mater. Sol. Cells, 80, 405-416, (2003).
  • 19. Bryant Y. G., Colvin D. P., Fibre with reversible enhanced thermal storage properties and fabrics made there from, US Patent 4 756 958, (1988).
  • 20. Li W., Zhang X. X., Wang C., Niu J. J., Preparation and characterization of microencapsulated phase change material with low formaldehyde content, Materials Chemistry and Physics, 106 (2/3), 437-442, (2007).
  • 21. Loxley A., Vincent B., Preparation of poly(methylmethacrylate) microcapsules with liquid cores, J. Colloid Interf. Science, 208, 49-62, (1998).
  • 22. Zhang Y., Wei J. L., Rui Y., Yin P. Z., Qing W. Z., Preparation and thermal property of phase change material microcapsules by phase separation, Mater. Science Forum 561/565, 2293-2296, (2007).
  • 23. Alkan C., Sari A., Karaipekli A., Uzun O., Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage, Solar Energy Materials and Solar Cells, 93(1), 143-147, (2009).
  • 24. Liang C., Lingling X., Hongbo S., Zhibin Z., Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system. Energy Conversion and Management, 50 (3), 723-729, (2009).
  • 25. Hawlader M. N. A., Uddin M. S., Khin M. M., Microencapsulated PCM thermal-energy storage system. Applied Energy, 74 (1-2), 195-202, (2003).
  • 26. Özonur Y., Mazman M., Paksoy H. Ö., Evliya H., Microencapsulation of coco fatty acid mixture for thermal energy storage with phase change material. International Journal of Energy Research, 30 (10),741-749, (2006).
  • 27. Onder E., Sarter N., Cimen E., Encapsulation of phase change materials by complex coacervation to improve thermal performances of woven fabrics, Thermochim. Acta, 467 63-72, (2008).
  • 28. Mulligan J. C., Colvin D. P., Bryant Y. G., Microencapsulated phase-change material suspensions for heat transfer in spacecraft thermal systems, J. of Spacecraft and Rocket, 332, (2), 278-284, (1996).
  • 29. Bryant I., Melt Spun Fibers Containing Microencapsulated Phase Change Material, Advances in Heat and Mass Transfer in Biotechnology, HTD-vol. 363/BED-vol. 44, 225-234, (1999).
  • 30. Inaba H., Tu P., Evaluation of thermophysical characteristics on shape-stabilized paraffin as a solid-liquid phase change material, Heat and Mass Transfer, 32 (40, 307-312, (1997).
  • 31. Hong Y., Xin-shi G., Preparation of polyethylene-paraffin compound as a form-stable solid-liquid phase change material, Solar Energy Materials and Solar Cells, 64 (1), 37-44, (2000).
  • 32. San A., Form-stable paraffin/high density polyethylene composites as solid-liquid phase change material for thermal energy storage: preparation and thermal properties. Energy Conversion and Management, 45 (13/14), 2033-2042, (2004).
  • 33. Kaygusuz K., Sari A., High density polyethylene/paraffin composites as form-stable phase change material for thermal energy storage, energy sources, Part A: recovery, utilization, and environmental effects, 29 (3), 261-270, (2007).
  • 34. Krupa I., Miková G., Luyt A. S. Polypropylene as a potential matrix for the creation of shape stabilized phase change materials, European Polymer Journal. 43 (3), 895-907, (2007).
  • 35. Xiao M., Feng B., Gong K., Thermal performance of a high conductive shape-stabilized thermal storage material. Solar Energy Materials and Solar Cells, 69 (3), 293-296,(2001).
  • 36. Peng S., Fuchs A., Wirtz R. A., Polymeric phase change composites for thermal energy storage, J. Appl Polym. Science, 93 (3), 1240-1251 (2004).
  • 37. Luyt A. S., Krupa I., Phase change materials formed by uv curable epoxy matrix and Fischer-Tropsch paraffin wax, Energy Conversion and Management, 50 (1), 57-61, (2009).
  • 38. Alkan C., Sari A., Fatty acid/poly(methyl methacrylate) (PMMA) blends as form-stable phase change materials for latent heat thermal energy storage, Solar Energy, 82 (2), 118-124, (2008).
  • 39. Alkan C., Sari A., Uzun O., Poly(ethyleneglycol)/acrylic polymer blends as form-stable phase change materials for latent heat thermal energy storage applications, AIChE J. 52 (9) 3310-3314, (2006).
  • 40. Cai Y., Hu Y., Song L., Tang Y., Yang R., Zhang Y., Chen Z., Fan W., Flammability and thermal properties of high density polyethylene/paraffin hybrid as a form-stable phase change material. Journal of Applied Polymer Science, 99 (4), 1320-1327, (2006).
  • 41. Py X., Olives R., Mauran S., Paraffinlporous-graphite-matrixcomposite as a high and constant power thermal storage material, International Journal of Heat and Mass Transfer, 44 (14), 2727-2737, (2001).
  • 42. Sari A., Karaipekli A., Preparation, thermal properties and thermal reliability of palmitic acid/ expanded graphite composite as form-stable PCM for thermal energy storage. Solar Energy Materials and Solar Cells, 93 (5), 571-576, (2009).
  • 43. Zhou X., Xiao H., Feng J., Zhang C., Jiang Y., Preparation and thermal properties of paraffin/ porous silica ceramic composite, Composites Science and Technology, 69 (7-8), 1246-1249, (2009).
  • 44. Salyer I. O., Dry powder mixes comprising phase change materials, US Patent 5 211 949,(1999).
  • 45. Sari A., Karaipekli A., Preparation, thermal properties and thermal reliability of capric acid/ expanded perlite composite for thermal energy storage, Mater. Chem. Phys. 109, 459-464, (2008).
  • 46. Zhang D., Tian S., Xiao D., Experimental study on the phase change behavior of phase change material confined in pores. Solar Energy, 81 (5), 653-660, (2007).
  • 47. Qingwen S., Yi L., Jianwei X., Hu J. Y., Yuen M., Thermal stability of composite phase change material microcapsules incorporated with silver nanoparticles. Polymer, 48, 3317-3323, (2007).
  • 48. Mettawee E. B. S., Assassa G. M. R., Thermal conductivity enhancement in a latent heat storage system. Solar Energy, 81 (7), 839-845, (2007).
  • 49. Ho C. J., Gao J. Y., Preparation and thermophvsical properties of nanoparticle-in-paraffin emulsion as phase change material, International Communications in Heat and Mass Transfer, 36 (5), 467-470, (2009).
  • 50. Elgafy A., Lafdi K., Effect of carbon nanofiber additives on thermal behavior of phase change materials. Carbon, 43 (15), 3067-3073, (2005).
  • 51. Karaipekli A., Sari A., Kaygusuz K., Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications. Renewable Energy, 32 (13), 2201-2210, (2007).
  • 52. Kim S., Drzal L. T., High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nunoplatelets. Solar Energy Materials and Solar Cells. 93 (1), 136-142, (2009).
  • 53. Zhang Y., Ding J., Wang X., Yang R., Lin K.. Influence of additives on thermal conductivity of shape-stabilized phase change material. Solar Energy Materials and Solar Cells, 90 (11), 1692-1702, (2006).
  • 54. Zhang Z., Fang X., Study on paraffin/ expanded graphite composite phase change thermal energy storage material. Energy Conversion and Management, 47 (3), 303-310, (2006).
  • 55. Sari A., Karaipekli A., Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/ expanded graphite composite as phase change material. Applied Thermal Engineering, 27, 1271-1277,(2007).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0059-0012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.