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ABSTRACT   When dealing with large datasets, computer 
memory constraints are a common problem. With the volumes of data 
exceeding 1 GiB of size, storage of the whole datasets in RAM 
becomes infeasible. Since in most applications one deals with only  
a portion of dataset at a time, the rest may be kept offline on non-
volatile memory that provides larger capacities. The access to non-
volatile memory is typically a few orders of magnitude slower than  
of RAM, so an efficient method of storage should be proposed to 
keep the number of disc accesses count as small as possible. In the 
paper I describe the offline storage of sparse matrices that is built on 
top of Hierarchical Data Format (precisely, on the latest revision − 
HDF5) addressing the problem of matrix-vector multiplication. 
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1. PROBLEM STATEMENT 
 
Large sparse matrices appear in numerous fields, i.e. statistical linguistics, 
mechanical engineering, data mining. There are numerous tools available to 
process the sparse matrices in memory. Most operations on such data come 
from linear algebra, with matrix-vector and matrix-matrix multiplication being the 
most common. As long as there is sufficient memory in the system to hold 
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both operands and results, direct RAM calculations are the fastest one can get 
on selected machine with the algorithm of choice. The problem arises when the 
amount of memory necessary to store the data exceeds the capacity of RAM 
available to the computing process, as all popular libraries require complete 
sets to be available at hand. The sets may be divided manually and loaded 
incrementally, but the technique requires careful crafting for each individual 
case. Another option is to resort to the operating system, which may give the 
process additional virtual memory that is not physically present on the machine. 
In the process which is called paging, the memory which is not currently in use 
is then stored on auxiliary storage (most often, a hard drive). 

Leading a whole system to the point, where all physical memory  
is occupied by calculation and the additional data is swapped can be considered 
catastrophic from the point of view of performance. The whole operating system 
is busy moving data from and to hard drive, which has been called “thrashing” 
from the early days of computing. Moreover, the virtual memory has its limits  
as well – it seldom exceeds the amount of RAM by an order of magnitude.  
On high performance computing (HPC) machines, a user may be given only 
limited amount of RAM per job and no swapping possibility at all. 

Matrix multiplication by vector algorithm can be formulated is such a way 
to maximize memory locality. The data kept in memory can be minimal, in the 
simplest formulation only one row from the matrix, an operand vector and result 
vector can be stored. If the number of input/output (IO) operations are drawn  
to minimum, limited to fetching the operands only one can expect best performance 
available for given hardware. In the next section I will enumerate sparse matrices 
storage methods, which are applicable to both in-memory and offline storage. 
Section 3 presents file formats used for serializing sparse matrices to disk.  
In section 4 I discuss offline storage possibility based on popular HDF5 library. 
Section 5 describes benchmarks on comparison of matrix-vector multiplication 
time of the presented formats with direct RAM multiplication and relational 
database query on PC and HPC cluster. 

 
 
 
 

2. SPARSE MATRICES STORAGE OPTIONS 
 

The most naive approach to optimize the sparse format storage is to organize 
the nonzero cells from sparse matrix in triplets: (row index, column index, value). 
This format will be further referred to as COO (from COOrdinate format). Note that 
this format does not specify the ordering of the elements, and the same cell can 
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appear in the format more than once1. This format is rapidly constructed  
and can be then converted to other formats. 

To enhance COO format is to introduce ordering on one or both row  
and column subscripts. A format with both subscripts sorted will be further referred 
to COS (COordinate Sorted). Assuming that no preordering on matrices  
is set, the average time of conversion between COO and COS format is 
Ο(k2 m-1 log k log (k/m)), constrained by sorting time. 

There is a straightforward modification of COS format, which eliminates 
logarithmic lookup behaviour from the first column. The idea is to store the 2nd 
and the 3rd column as in COS format, and replace the 1st column with separate 
table of indices pointing at the beginning of subsequent rows. This is roughly 
equivalent to C language representation of an array of pointers to contiguous 
block of memory with subscripts/values structures. The formats in the family of 
formats are called CSC and CSR (Compressed Sparse Column/Row) and they 
differ only by transposition. 

A simple illustration of the formats storage for 5×10 matrix with 6 nonzero 
elements is presented in the following subsections. The complexities of lookup 
times are gathered in Table 1. All the formats are further explained in the following 
subsections. 
 
 
TABLE 1 
Asymptotic complexities of chosen factors of different matrix formats 

 Dense COO COS CSC CSR 
Memory Θ(mn) Θ(k) Θ(k) Θ(2k+m) Θ(2k+n) 
Element access 
(average) Θ(1) Θ(k) Θ(log k log (k/m)) Θ(log (k/n)) Θ(log (k/m)) 

Row access 
(average) Θ(1) Θ(k) 

Θ(log k) or Θ(k) 
Θ(m log (k/n)) Θ(1) 

Column access 
(average) Θ(1) Θ(k) Θ(1) Θ(n log (k/m)) 

 
 

2.1. Concept 
 
 The exemplary matrix that would be analyzed through the article is sketched 
in Table 2. The row and column indices start at zeros, as in C. The data format 
are plain integers. In the rest of the article such naming convention will be used: 
n   − number of columns, 
m − number of rows, 
                                                           
1 It is up to the mathematics library on how to process it. Scipy, for example, sums all duplicate  
  cells. 
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k − number of nonzero elements, 
O( · ) − Landau notation of maximal asymptotic complexity, 
Θ( · ) − Landau notation of equivalent asymptotic complexity. 
 
 

TABLE 2 
Exemplary matrix without storage scheme 

 0 1 2 3 4 5 6 7 8 9 
0 1    2      
1   3        
2           
3     4   5   
4          9 

 
 

2.2. Dense 
 
 In small examples and rapid prototyping, the sparse matrix can  
be represented in memory as a dense format, storing all zero values alongside 
the nonzero ones. Thus, the matrix would be viewed as contiguous block  
in memory or disk. This allows for rapid indexing in constant time, as the memory/disk 
offset is calculated directly from column and row indices. The disadvantages  
are clear: 

• one has to store Θ(nm) cells for all the zeros, largely limiting the upper 
bounds on matrix size,  

• the nonzero values can be recognized only by scanning and direct 
comparison – their location is not known before the operations.  

The matrix is shown in Table 3. 

 
 TABLE 3 
 Exemplary matrix stored in dense format 

1 0 0 0 2 0 0 0 0 0 
0 0 3 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 
0 0 0 0 4 0 0 5 0 0 
0 0 0 0 0 0 0 0 0 9 

 
 

2.3. Coordinate format 
 

The coordinate format (COO) is the most straightforward way of representing 
the sparse matrix as triplets: (row index, column index, cell value). It has the 
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advantage of storage size requirements as high as Θ(k). It can also be built 
incrementally, which is beneficial for interfacing with such tools as mesh 
generators in mechanical analysis and deserializers of any kind. The simplest 
approach to COO does not enforce any sorting on the row/column subscripts, 
so the creation time is Θ(k). However, the average indexing time is also Θ(k), 
because of the need to iterate the whole matrix before successful match on the 
indices. The exemplary matrix in this scheme is depicted in Table 4. 
 
 

TABLE 4 
Exemplary matrix in coordinate format 

row index 0 1 0 4 3 3 
column index 4 2 0 9 7 4 

value 2 3 1 6 5 4 

 
 

2.4. Coordinate format with indices 
 

The row and column subscripts, or the combination of both, can be 
associated with external B-tree indices, leading to logarithmic time on the 
lookup. Note that such representation is the most straightforward way of encoding 
sparse matrix in relational database management systems (RDBMS). Entities 
sufficient for efficient representation are the triplets table and the indices – they 
are both primitive types in RDBMS, so they are usually aggressively optimized 
w.r.t. the speed and disk utilization by the libraries authors. 

The depiction of such auxiliary indexing does not fit the scope of this 
article. 

The format will be referred to as COI, and depending on the indexing 
scheme used, it can achieve average indexing times Θ(log n) on columns, 
Θ(log m) on rows and Θ(log m + log n) on cells. Nevertheless, each index is an 
additional constraint on memory and may need longsome rebuild operations on 
table modifications. The precise complexities are not listed here, as they largely 
depend on the choice of database engine. 

 
 

2.5. Coordinate format sorted 
 
 An alternative reiteration of COO format is to enforce sorting on row and 
column subscripts in any order (in the example the primary sort is on rows). 
Starting from an unsorted COO, full sorting time is Ο(k2 m-1 log k log (k/m)), 
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which is tolerable, as it is mostly done once for a given problem. The coordinate 
format sorted (COS) shares its advantages with COO. Moreover, it has the 
following benefits: 

• retrieving an entire row takes O(log k),  
• retrieving a single element takes Ο(log k log (k/m)),.  

 
The logarithmic speedup can be implemented i.e. by bisection algorithm 

and does not require any additional storage. Unfortunately, the performance can 
be compromised by the number of disk accesses needed to reach an appropriate 
row. For the illustration, see Table 5. 
 
 

TABLE 5 
Exemplary matrix in coordinate format sorted 

row index 0 0 1 3 3 4 
column index 0 4 2 4 7 9 

value 1 2 3 4 5 6 
 
 

2.6. Compressed row format 
 

The compressed row format (CSR) is a direct optimization of COS 
format. At the same time, it removes logarithmic lookup time on rows and may 
reduce the space (depending on k/n factor). It is achieved by replacing the table 
with row indices with a separate table, which holds the offsets of (column 
subscripts, values) tuples, which itself is indexed by row indices. It introduces  
a level of indirection, as the arrays are stored separately, but the row indexing  
is now Θ(1). As for the (column subscripts, values) tuples are still sorted by columns, 
the average cell retrieval becomes logarithmic w.r.t. k/m. The representation 
example is shown in Table 6. 

 
TABLE 6 
Exemplary matrix in compressed row format. The arrays in parentheses are pure 
memory offsets and are not stored. They are shown here as they are key features  
to the functionality 

Row array for tuple table indexing 

(row index) 0 1 2 3 4 5 (end marker) 
tuple table offset 0 2 3 3 5 6 (end) 

 

Column/value tuple table 

(offset) 0 1 2 3 4 5 6 (end) 
column index 0 4 2 4 7 9  

value 1 2 3 4 5 6  
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2.7. Compressed column format 
 

The compressed column format (CSC) is nothing more than a transposition 
of the CSR format. The exemplary matrix is illustrated in Table 7. Note that  
in the example k < n, so the memory requirements are bigger than those  
for an equivalent for COO representation. 
 
 

TABLE 7 
Exemplary matrix in compressed column format. The arrays in parentheses are pure 
memory offsets and are not stored. They are shown here as they are key features to the 
functionality 

Column array for tuple table indexing 

(column index) 0 1 2 3 4 5 6 7 8 9 10 (end marker) 
tuple table offset 0 1 1 2 2 4 4 4 5 5 6 (end) 

 

Row/value tuple table 

(offset) 0 1 2 3 4 5 6 (end) 
row index 0 1 0 3 3 4  

value 1 3 2 4 5 6  

 
 

The nomenclature for the arrays differs with each implementation. The popular 
ones use names as described in Table 8. 

 
 

TABLE 8 
Compressed matrix nomenclature as used in popular storage 
matrix (CSC flavour) 

Format tuple table offset col index cell value 
Matlab V7.3 ir jr data 

Scipy indptr indices data 
Harwell-Boeing colptr rowind values 
SparseLib++ [1] colptr col_ind val 

 

 
 
3. POPULAR FORMATS 
 
 The common storage formats of sparse matrices include Harwell-Boeing 
and Matrix Market files from open formats and Matlab .mat files as the most 
popular propertiary one. 
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The Harwell-Boeing and Matrix Market files are plain text files with numbers 
formatted as a text compatible with FORTRAN I/O. Plain ASCII encoding accorded 
for its portability across systems for many years. Harwell-Boeing format  
is practically a CSC matrix, while Matrix Market is COO format. Matlab .mat 
files of versions ≤ V7.0 store their sparse matrix files in binary CSC format. 
Matlab .mat files of versions ≥ V7.3 store all matrices in HDF5 format. 
 
 
 
 
4. OFFLINE SPARSE MATRICES USING HDF5 
 
 HDF5 format is a fast, portable and robust file format for storing arrays  
of numeric data. For two decades it has become a de-facto standard in numerous 
fields of engineering, including astronomy, geospatial data, meteorology and 
biochemistry [2, 3]. In recent versions of Matlab (from 7.3 or 2006b upwards),  
it has become the optional underlying storage format for .mat files [4], as the 
dense arrays are easily represented in HDF5, and sparse matrices can be 
stored using any of described schemes. Still, for Matlab, the format is meant for 
serialization/deserialization only; when one wants to perform calculations on the 
data, it needs to be loaded into the memory as a whole. 

Due to the demanding needs of storing and retrieving huge datasets,  
a format based on HDF5 is proposed. For the underlying storage it uses plain 
tables of 64-bit unsigned integers for the matrix subscripts and 64-bit IEEE 
floating point values for matrix cell values. The matrix is stored in CSC format 
as described in subsections 2.5 and 2.6.  
 
 
 
 
5. BENCHMARK 
 
 The proposed approach of offline representation of sparse matrices on 
HDF5 format was compared with an alternative method of storage – a relational 
database with B-tree indices on row and column subscripts. Direct calculations 
in RAM are conducted along those two schemes, serving as a reference. 

Sparse matrices were generated pseudo-randomly, to have uniform 
distribution of nonzero elements along the matrix. Tests were conducted on two 
sets of matrices – very dense ones, with density about 1/2, and relatively sparse 
ones, with about 1 nonzero element in 1000. 
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 TABLE 9 
 Sizes of test matrices used in benchmark 

Dense sets Sparse sets 
k m,n k/(mn) k m,n k/(mn) 

10000 140 0.51 10000 3260 0.00094 
30000 245 0.50 30000 5470 0.001 

100000 447 0.50 100000 10000 0.001 
300000 775 0.50 300000 17320 0.001 

1000000 1400 0.51 1000000 31600 0.001 
3000000 2450 0.50 3000000 54700 0.001 

10000000 4470 0.50 10000000 100000 0.001 
77000000 12400 0.50 77000000 277500 0.001 

 
 

Each matrix from the set was converted to the following formats: 
• Sqlite3 table with three columns as COO format. Two database indices 

were created on matrix row and matrix column columns. 
• HDF5 file as described in Section 4. 
• Matlab V7.0 .mat file to store the sparse matrix for easy deserialization 

into RAM. 
 
 A batch of multiplications was performed as follows. A sparse vector was 
generated by randomly selecting indices from the range of columns of the 
matrix with uniform distribution. Its entries were filled with random floating-point 
values from the [0,1) range2. The number of the nonzero elements of the vector 
was selected to be 10 and 100. For the smallest matrices, the number was 
trimmed to the matrix columns count. The sparse vector operand is kept  
in memory as a hashtable, to provide O(1) time lookup on its elements. The 
matrices were multiplied by the vector in the following way: 

• For Sqlite3 table, a “SELECT” query is performed to pick only the triplets 
subject to multiplication by nonzero values. The result vector is first created, 
and then populated with incremental results. The triplets are fetched  
in arbitrary order, then multiplied by the vector elements and added  
to the result. The result is a dense numerical array. 

• For sparse matrix built upon HDF5 tables only the columns subject  
to multiplication were chosen on the base of indptr table. The result 
vector is first created, and then populated with incremental results.  
The columns from the matrix are fetched in the ascending order  
of nonzero entries subscripts of the operand vector. For each column, 
the indptr table is queried once, then column data is fetched from 

                                                           
2 Which is not very relevant for the algorithm benchmark. 
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tuple table. In the best case, the disk access count can be as low  
as twice the number of nonzero vector elements. 

• For the direct RAM calculations I resort to Scipy sparse matrix routines, 
which are low-level C++ functions.  

 
The software was modelled in Python, which serves as a glue language 

between high performance libraries written in C, due to the rapid speed of prototyping 
and easiness of testing. Unfortunately, the overhead introduced by high level 
wrappers over the libraries can be significant. The resulting code runs proportionally 
slower than equivalent low-level software. Even though, the researchers show, 
that the slowdown factor is from the range of (1,20), it is largely dependent on  
a given problem [5, 6]. The profiling tools show marginal overhead of Python 
runtime with respect to IO and compiled-in C routines. 
 The tests were run on modern PC with 4 GiB of memory on Intel(R) 
Core(TM)2 Quad CPU Q9400 with 2.67 GHz as a 32-bit processes and on Intel 
Server with four Intel(R) Xeon(R) CPU X5550 running 2.67 GHz as 64-bit 
processes. The partitions were of ext4 type in both cases. There were no 
attempts to optimize the code beyond default setup; single core was used, no 
cache optimization techniques were utilized. The gathered times are taken for 
the sole multiplication time, including neither the loading of the datasets and 
libraries nor the vector generation. There were 50 multiplications for each size 
of vector and matrix, then the average of each batch was taken.  

 
The results of the benchmark are presented in Figures 1, 2, 3 and 4. 

 

 
 

Fig. 1. Sparse matrix-vector multiplication time against sizes of matrices. Nonzero elements 
of the vector are as high as 10, average density is about 0.001. Left: PC, Right: Server 
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Fig. 2. Sparse matrix-vector multiplication time against sizes of matrices. Nonzero elements  
of the vector are as high as 1000, average density is about 0.001. Left: PC, Right: Server 
 
 
 
 
 
 

 
 

Fig. 3. Sparse matrix-vector multiplication time against sizes of matrices. Nonzero elements  
of the vector are as high as 10, average density is about 0.05. Left: PC, Right: Server. 
 



220 J. Wicijowski 

 
 

Fig. 4. Sparse matrix-vector multiplication time against sizes of matrices. Nonzero elements  
of the vector are as high as 1000, average density is about 0.05. Left: PC, Right: Server 
 
 
 
6. CONCLUSIONS 
 

The benchmark results are mixed and no solution fitting all needs can  
be designated. Certainly, for a class of problems, the proposed CSC format 
based of HDF5 behaves fast enough for it may be worth implementing a low 
level, high performance sparse library on top of HDF5. 

As the benchmarks indicate, the proposed format outperforms the relational 
database solution, when the number of entries is high, and whole columns  
of numbers can be fetched from the disk in continuous operation. Even if  
the RDBMS is faster in the beginning, its performance degrades quicker than  
of the presented schema. However, the performance of RDBMS solution is 
incomparable, when the number of data to be read is relatively low, so it is closer 
to the typical use cases of the engine, where the indices implementation excel. 

Unfortunately, offline matrices are always slower than their counterparts 
in RAM by constant order of magnitude, which is also seen on the charts. Such 
constraint limits the application possibility of offline matrices to the problems 
with high locality, like the presented one. For problems which require random 
access to whole matrix, such as factorization or clustering, the speed regression 
would be proportional to the proportion of access speed to RAM and non-volatile 
memory, which in the presented case was about 15. This motivates the progress 
in agglomerative algorithms, where the dataset is divided into separate chunks 
by design, instead of the necessity, such the popular ones presented in [7, 8]. 
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SZYBKIE RZADKIE MACIERZE  
PRZECHOWYWANE NA DYSKU 

 
 

Jan WICIJOWSKI 
 

STRESZCZENIE    Ograniczenia pamięci komputera są powszech-
nym problemem przy obliczeniach przeprowadzanych na wielkich zbio-
rach danych. Przy danych roboczych przekraczających 1 GiB, składo-
wanie całości w pamięci operacyjnej staje się utrudnione, a często 
nawet nieosiągalne. Ponieważ w większości aplikacji wykonuje się dzia-
łania jedynie na fragmencie zbioru danych, reszta może być przecho-
wywana w pamięci stałej, która zapewnia dużo większe pojemności. 
Dostęp do pamięci stałej jest zazwyczaj kilka rzędów wielkości wol-
niejszy niż do RAMu, zatem należy przedstawić metodę składowania 
ograniczającą do minimum ilość dostępów do dysku. W artykule opi-
suję format przechowywania macierzy rzadkich na dysku, zbudowa-
nym na bazie formatu HDF5 (Hierarchical Data Format) pod kątem 
minimalizacji czasu mnożenia tej macierzy przez wektor. 
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