

Jan WICIJOWSKI

QUICK OFFLINE SPARSE MATRICES*)

ABSTRACT When dealing with large datasets, computer
memory constraints are a common problem. With the volumes of data
exceeding 1 GiB of size, storage of the whole datasets in RAM
becomes infeasible. Since in most applications one deals with only
a portion of dataset at a time, the rest may be kept offline on non-
volatile memory that provides larger capacities. The access to non-
volatile memory is typically a few orders of magnitude slower than
of RAM, so an efficient method of storage should be proposed to
keep the number of disc accesses count as small as possible. In the
paper I describe the offline storage of sparse matrices that is built on
top of Hierarchical Data Format (precisely, on the latest revision −
HDF5) addressing the problem of matrix-vector multiplication.

Keywords: Sparse matrix, multiplication, offline storage, huge datasets

1. PROBLEM STATEMENT

Large sparse matrices appear in numerous fields, i.e. statistical linguistics,
mechanical engineering, data mining. There are numerous tools available to
process the sparse matrices in memory. Most operations on such data come
from linear algebra, with matrix-vector and matrix-matrix multiplication being the
most common. As long as there is sufficient memory in the system to hold

*) This work was supported by MNISW grant OR00001905.

Jan WICIJOWSKI, M.Sc., Eng.

e-mail: wici@agh.edu.pl

Department of Electronics
AGH University of Science and Technology

PROCEEDINGS OF ELECTROTECHNICAL INSTTITUTE, Issue 247, 2010

210 J. Wicijowski

both operands and results, direct RAM calculations are the fastest one can get
on selected machine with the algorithm of choice. The problem arises when the
amount of memory necessary to store the data exceeds the capacity of RAM
available to the computing process, as all popular libraries require complete
sets to be available at hand. The sets may be divided manually and loaded
incrementally, but the technique requires careful crafting for each individual
case. Another option is to resort to the operating system, which may give the
process additional virtual memory that is not physically present on the machine.
In the process which is called paging, the memory which is not currently in use
is then stored on auxiliary storage (most often, a hard drive).

Leading a whole system to the point, where all physical memory
is occupied by calculation and the additional data is swapped can be considered
catastrophic from the point of view of performance. The whole operating system
is busy moving data from and to hard drive, which has been called “thrashing”
from the early days of computing. Moreover, the virtual memory has its limits
as well – it seldom exceeds the amount of RAM by an order of magnitude.
On high performance computing (HPC) machines, a user may be given only
limited amount of RAM per job and no swapping possibility at all.

Matrix multiplication by vector algorithm can be formulated is such a way
to maximize memory locality. The data kept in memory can be minimal, in the
simplest formulation only one row from the matrix, an operand vector and result
vector can be stored. If the number of input/output (IO) operations are drawn
to minimum, limited to fetching the operands only one can expect best performance
available for given hardware. In the next section I will enumerate sparse matrices
storage methods, which are applicable to both in-memory and offline storage.
Section 3 presents file formats used for serializing sparse matrices to disk.
In section 4 I discuss offline storage possibility based on popular HDF5 library.
Section 5 describes benchmarks on comparison of matrix-vector multiplication
time of the presented formats with direct RAM multiplication and relational
database query on PC and HPC cluster.

2. SPARSE MATRICES STORAGE OPTIONS

The most naive approach to optimize the sparse format storage is to organize
the nonzero cells from sparse matrix in triplets: (row index, column index, value).
This format will be further referred to as COO (from COOrdinate format). Note that
this format does not specify the ordering of the elements, and the same cell can

Quick offline sparse matrices 211

appear in the format more than once1. This format is rapidly constructed
and can be then converted to other formats.

To enhance COO format is to introduce ordering on one or both row
and column subscripts. A format with both subscripts sorted will be further referred
to COS (COordinate Sorted). Assuming that no preordering on matrices
is set, the average time of conversion between COO and COS format is
Ο(k2 m-1 log k log (k/m)), constrained by sorting time.

There is a straightforward modification of COS format, which eliminates
logarithmic lookup behaviour from the first column. The idea is to store the 2nd
and the 3rd column as in COS format, and replace the 1st column with separate
table of indices pointing at the beginning of subsequent rows. This is roughly
equivalent to C language representation of an array of pointers to contiguous
block of memory with subscripts/values structures. The formats in the family of
formats are called CSC and CSR (Compressed Sparse Column/Row) and they
differ only by transposition.

A simple illustration of the formats storage for 5×10 matrix with 6 nonzero
elements is presented in the following subsections. The complexities of lookup
times are gathered in Table 1. All the formats are further explained in the following
subsections.

TABLE 1
Asymptotic complexities of chosen factors of different matrix formats

 Dense COO COS CSC CSR
Memory Θ(mn) Θ(k) Θ(k) Θ(2k+m) Θ(2k+n)
Element access
(average) Θ(1) Θ(k) Θ(log k log (k/m)) Θ(log (k/n)) Θ(log (k/m))

Row access
(average) Θ(1) Θ(k)

Θ(log k) or Θ(k)
Θ(m log (k/n)) Θ(1)

Column access
(average) Θ(1) Θ(k) Θ(1) Θ(n log (k/m))

2.1. Concept

 The exemplary matrix that would be analyzed through the article is sketched
in Table 2. The row and column indices start at zeros, as in C. The data format
are plain integers. In the rest of the article such naming convention will be used:
n − number of columns,
m − number of rows,

1 It is up to the mathematics library on how to process it. Scipy, for example, sums all duplicate
 cells.

212 J. Wicijowski

k − number of nonzero elements,
O(·) − Landau notation of maximal asymptotic complexity,
Θ(·) − Landau notation of equivalent asymptotic complexity.

TABLE 2
Exemplary matrix without storage scheme

 0 1 2 3 4 5 6 7 8 9
0 1 2
1 3
2
3 4 5
4 9

2.2. Dense

 In small examples and rapid prototyping, the sparse matrix can
be represented in memory as a dense format, storing all zero values alongside
the nonzero ones. Thus, the matrix would be viewed as contiguous block
in memory or disk. This allows for rapid indexing in constant time, as the memory/disk
offset is calculated directly from column and row indices. The disadvantages
are clear:

• one has to store Θ(nm) cells for all the zeros, largely limiting the upper
bounds on matrix size,

• the nonzero values can be recognized only by scanning and direct
comparison – their location is not known before the operations.

The matrix is shown in Table 3.

 TABLE 3
 Exemplary matrix stored in dense format

1 0 0 0 2 0 0 0 0 0
0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 4 0 0 5 0 0
0 0 0 0 0 0 0 0 0 9

2.3. Coordinate format

The coordinate format (COO) is the most straightforward way of representing
the sparse matrix as triplets: (row index, column index, cell value). It has the

Quick offline sparse matrices 213

advantage of storage size requirements as high as Θ(k). It can also be built
incrementally, which is beneficial for interfacing with such tools as mesh
generators in mechanical analysis and deserializers of any kind. The simplest
approach to COO does not enforce any sorting on the row/column subscripts,
so the creation time is Θ(k). However, the average indexing time is also Θ(k),
because of the need to iterate the whole matrix before successful match on the
indices. The exemplary matrix in this scheme is depicted in Table 4.

TABLE 4
Exemplary matrix in coordinate format

row index 0 1 0 4 3 3
column index 4 2 0 9 7 4

value 2 3 1 6 5 4

2.4. Coordinate format with indices

The row and column subscripts, or the combination of both, can be
associated with external B-tree indices, leading to logarithmic time on the
lookup. Note that such representation is the most straightforward way of encoding
sparse matrix in relational database management systems (RDBMS). Entities
sufficient for efficient representation are the triplets table and the indices – they
are both primitive types in RDBMS, so they are usually aggressively optimized
w.r.t. the speed and disk utilization by the libraries authors.

The depiction of such auxiliary indexing does not fit the scope of this
article.

The format will be referred to as COI, and depending on the indexing
scheme used, it can achieve average indexing times Θ(log n) on columns,
Θ(log m) on rows and Θ(log m + log n) on cells. Nevertheless, each index is an
additional constraint on memory and may need longsome rebuild operations on
table modifications. The precise complexities are not listed here, as they largely
depend on the choice of database engine.

2.5. Coordinate format sorted

 An alternative reiteration of COO format is to enforce sorting on row and
column subscripts in any order (in the example the primary sort is on rows).
Starting from an unsorted COO, full sorting time is Ο(k2 m-1 log k log (k/m)),

214 J. Wicijowski

which is tolerable, as it is mostly done once for a given problem. The coordinate
format sorted (COS) shares its advantages with COO. Moreover, it has the
following benefits:

• retrieving an entire row takes O(log k),
• retrieving a single element takes Ο(log k log (k/m)),.

The logarithmic speedup can be implemented i.e. by bisection algorithm

and does not require any additional storage. Unfortunately, the performance can
be compromised by the number of disk accesses needed to reach an appropriate
row. For the illustration, see Table 5.

TABLE 5
Exemplary matrix in coordinate format sorted

row index 0 0 1 3 3 4
column index 0 4 2 4 7 9

value 1 2 3 4 5 6

2.6. Compressed row format

The compressed row format (CSR) is a direct optimization of COS
format. At the same time, it removes logarithmic lookup time on rows and may
reduce the space (depending on k/n factor). It is achieved by replacing the table
with row indices with a separate table, which holds the offsets of (column
subscripts, values) tuples, which itself is indexed by row indices. It introduces
a level of indirection, as the arrays are stored separately, but the row indexing
is now Θ(1). As for the (column subscripts, values) tuples are still sorted by columns,
the average cell retrieval becomes logarithmic w.r.t. k/m. The representation
example is shown in Table 6.

TABLE 6
Exemplary matrix in compressed row format. The arrays in parentheses are pure
memory offsets and are not stored. They are shown here as they are key features
to the functionality

Row array for tuple table indexing

(row index) 0 1 2 3 4 5 (end marker)
tuple table offset 0 2 3 3 5 6 (end)

Column/value tuple table

(offset) 0 1 2 3 4 5 6 (end)
column index 0 4 2 4 7 9

value 1 2 3 4 5 6

Quick offline sparse matrices 215

2.7. Compressed column format

The compressed column format (CSC) is nothing more than a transposition
of the CSR format. The exemplary matrix is illustrated in Table 7. Note that
in the example k < n, so the memory requirements are bigger than those
for an equivalent for COO representation.

TABLE 7
Exemplary matrix in compressed column format. The arrays in parentheses are pure
memory offsets and are not stored. They are shown here as they are key features to the
functionality

Column array for tuple table indexing

(column index) 0 1 2 3 4 5 6 7 8 9 10 (end marker)
tuple table offset 0 1 1 2 2 4 4 4 5 5 6 (end)

Row/value tuple table

(offset) 0 1 2 3 4 5 6 (end)
row index 0 1 0 3 3 4

value 1 3 2 4 5 6

The nomenclature for the arrays differs with each implementation. The popular
ones use names as described in Table 8.

TABLE 8
Compressed matrix nomenclature as used in popular storage
matrix (CSC flavour)

Format tuple table offset col index cell value
Matlab V7.3 ir jr data

Scipy indptr indices data
Harwell-Boeing colptr rowind values
SparseLib++ [1] colptr col_ind val

3. POPULAR FORMATS

 The common storage formats of sparse matrices include Harwell-Boeing
and Matrix Market files from open formats and Matlab .mat files as the most
popular propertiary one.

216 J. Wicijowski

The Harwell-Boeing and Matrix Market files are plain text files with numbers
formatted as a text compatible with FORTRAN I/O. Plain ASCII encoding accorded
for its portability across systems for many years. Harwell-Boeing format
is practically a CSC matrix, while Matrix Market is COO format. Matlab .mat
files of versions ≤ V7.0 store their sparse matrix files in binary CSC format.
Matlab .mat files of versions ≥ V7.3 store all matrices in HDF5 format.

4. OFFLINE SPARSE MATRICES USING HDF5

 HDF5 format is a fast, portable and robust file format for storing arrays
of numeric data. For two decades it has become a de-facto standard in numerous
fields of engineering, including astronomy, geospatial data, meteorology and
biochemistry [2, 3]. In recent versions of Matlab (from 7.3 or 2006b upwards),
it has become the optional underlying storage format for .mat files [4], as the
dense arrays are easily represented in HDF5, and sparse matrices can be
stored using any of described schemes. Still, for Matlab, the format is meant for
serialization/deserialization only; when one wants to perform calculations on the
data, it needs to be loaded into the memory as a whole.

Due to the demanding needs of storing and retrieving huge datasets,
a format based on HDF5 is proposed. For the underlying storage it uses plain
tables of 64-bit unsigned integers for the matrix subscripts and 64-bit IEEE
floating point values for matrix cell values. The matrix is stored in CSC format
as described in subsections 2.5 and 2.6.

5. BENCHMARK

 The proposed approach of offline representation of sparse matrices on
HDF5 format was compared with an alternative method of storage – a relational
database with B-tree indices on row and column subscripts. Direct calculations
in RAM are conducted along those two schemes, serving as a reference.

Sparse matrices were generated pseudo-randomly, to have uniform
distribution of nonzero elements along the matrix. Tests were conducted on two
sets of matrices – very dense ones, with density about 1/2, and relatively sparse
ones, with about 1 nonzero element in 1000.

Quick offline sparse matrices 217

 TABLE 9
 Sizes of test matrices used in benchmark

Dense sets Sparse sets
k m,n k/(mn) k m,n k/(mn)

10000 140 0.51 10000 3260 0.00094
30000 245 0.50 30000 5470 0.001

100000 447 0.50 100000 10000 0.001
300000 775 0.50 300000 17320 0.001

1000000 1400 0.51 1000000 31600 0.001
3000000 2450 0.50 3000000 54700 0.001

10000000 4470 0.50 10000000 100000 0.001
77000000 12400 0.50 77000000 277500 0.001

Each matrix from the set was converted to the following formats:
• Sqlite3 table with three columns as COO format. Two database indices

were created on matrix row and matrix column columns.
• HDF5 file as described in Section 4.
• Matlab V7.0 .mat file to store the sparse matrix for easy deserialization

into RAM.

 A batch of multiplications was performed as follows. A sparse vector was
generated by randomly selecting indices from the range of columns of the
matrix with uniform distribution. Its entries were filled with random floating-point
values from the [0,1) range2. The number of the nonzero elements of the vector
was selected to be 10 and 100. For the smallest matrices, the number was
trimmed to the matrix columns count. The sparse vector operand is kept
in memory as a hashtable, to provide O(1) time lookup on its elements. The
matrices were multiplied by the vector in the following way:

• For Sqlite3 table, a “SELECT” query is performed to pick only the triplets
subject to multiplication by nonzero values. The result vector is first created,
and then populated with incremental results. The triplets are fetched
in arbitrary order, then multiplied by the vector elements and added
to the result. The result is a dense numerical array.

• For sparse matrix built upon HDF5 tables only the columns subject
to multiplication were chosen on the base of indptr table. The result
vector is first created, and then populated with incremental results.
The columns from the matrix are fetched in the ascending order
of nonzero entries subscripts of the operand vector. For each column,
the indptr table is queried once, then column data is fetched from

2 Which is not very relevant for the algorithm benchmark.

218 J. Wicijowski

tuple table. In the best case, the disk access count can be as low
as twice the number of nonzero vector elements.

• For the direct RAM calculations I resort to Scipy sparse matrix routines,
which are low-level C++ functions.

The software was modelled in Python, which serves as a glue language

between high performance libraries written in C, due to the rapid speed of prototyping
and easiness of testing. Unfortunately, the overhead introduced by high level
wrappers over the libraries can be significant. The resulting code runs proportionally
slower than equivalent low-level software. Even though, the researchers show,
that the slowdown factor is from the range of (1,20), it is largely dependent on
a given problem [5, 6]. The profiling tools show marginal overhead of Python
runtime with respect to IO and compiled-in C routines.
 The tests were run on modern PC with 4 GiB of memory on Intel(R)
Core(TM)2 Quad CPU Q9400 with 2.67 GHz as a 32-bit processes and on Intel
Server with four Intel(R) Xeon(R) CPU X5550 running 2.67 GHz as 64-bit
processes. The partitions were of ext4 type in both cases. There were no
attempts to optimize the code beyond default setup; single core was used, no
cache optimization techniques were utilized. The gathered times are taken for
the sole multiplication time, including neither the loading of the datasets and
libraries nor the vector generation. There were 50 multiplications for each size
of vector and matrix, then the average of each batch was taken.

The results of the benchmark are presented in Figures 1, 2, 3 and 4.

Fig. 1. Sparse matrix-vector multiplication time against sizes of matrices. Nonzero elements
of the vector are as high as 10, average density is about 0.001. Left: PC, Right: Server

Quick offline sparse matrices 219

Fig. 2. Sparse matrix-vector multiplication time against sizes of matrices. Nonzero elements
of the vector are as high as 1000, average density is about 0.001. Left: PC, Right: Server

Fig. 3. Sparse matrix-vector multiplication time against sizes of matrices. Nonzero elements
of the vector are as high as 10, average density is about 0.05. Left: PC, Right: Server.

220 J. Wicijowski

Fig. 4. Sparse matrix-vector multiplication time against sizes of matrices. Nonzero elements
of the vector are as high as 1000, average density is about 0.05. Left: PC, Right: Server

6. CONCLUSIONS

The benchmark results are mixed and no solution fitting all needs can
be designated. Certainly, for a class of problems, the proposed CSC format
based of HDF5 behaves fast enough for it may be worth implementing a low
level, high performance sparse library on top of HDF5.

As the benchmarks indicate, the proposed format outperforms the relational
database solution, when the number of entries is high, and whole columns
of numbers can be fetched from the disk in continuous operation. Even if
the RDBMS is faster in the beginning, its performance degrades quicker than
of the presented schema. However, the performance of RDBMS solution is
incomparable, when the number of data to be read is relatively low, so it is closer
to the typical use cases of the engine, where the indices implementation excel.

Unfortunately, offline matrices are always slower than their counterparts
in RAM by constant order of magnitude, which is also seen on the charts. Such
constraint limits the application possibility of offline matrices to the problems
with high locality, like the presented one. For problems which require random
access to whole matrix, such as factorization or clustering, the speed regression
would be proportional to the proportion of access speed to RAM and non-volatile
memory, which in the presented case was about 15. This motivates the progress
in agglomerative algorithms, where the dataset is divided into separate chunks
by design, instead of the necessity, such the popular ones presented in [7, 8].

Quick offline sparse matrices 221

LITERATURE

1. Dongarra, J., Xz, J. D., Lumsdaine, A., Niu, X., Pozo, R. and Remington, K.: A sparse matrix

library in C++ for high performance architectures, 1994.

2. Georgieva, J., Gancheva, V. and Goranova, M.: Scientific data formats. In AIC’09: Proceedings
of the 9th WSEAS international conference on Applied informatics and communications,
pages 19–24, Stevens Point, Wisconsin, USA, 2009. World Scientific and Engineering Academy
and Society (WSEAS).

3. HDF Group. Hdf5 users. Online, Last modified January 28th 2010.

4. Sonnenburg, S.: Matlab(TM) 7.3 file format is actually HDF5 and can be read from other
languages like Python. Online, November 2009.

5. Cai, X., Langtangen, P.T., and Moe, H.: On the performance of the Python programming
language for serial and parallel scientific computations, Scientific Programming, Volume 13,
pages 31-56, number 1/2005.

6. Cannon, B.: Localized type inference of atomic types in Python, Online, 2005.
7. Gorrell, G.: Generalized hebbian algorithm for incremental latent semantic analysis. In Proceedings

of Interspeech, 2006.

Manuscript submitted 17.08.2010
Reviewed by Jacek Starzyński, D.Sc., Eng.

SZYBKIE RZADKIE MACIERZE
PRZECHOWYWANE NA DYSKU

Jan WICIJOWSKI

STRESZCZENIE Ograniczenia pamięci komputera są powszech-
nym problemem przy obliczeniach przeprowadzanych na wielkich zbio-
rach danych. Przy danych roboczych przekraczających 1 GiB, składo-
wanie całości w pamięci operacyjnej staje się utrudnione, a często
nawet nieosiągalne. Ponieważ w większości aplikacji wykonuje się dzia-
łania jedynie na fragmencie zbioru danych, reszta może być przecho-
wywana w pamięci stałej, która zapewnia dużo większe pojemności.
Dostęp do pamięci stałej jest zazwyczaj kilka rzędów wielkości wol-
niejszy niż do RAMu, zatem należy przedstawić metodę składowania
ograniczającą do minimum ilość dostępów do dysku. W artykule opi-
suję format przechowywania macierzy rzadkich na dysku, zbudowa-
nym na bazie formatu HDF5 (Hierarchical Data Format) pod kątem
minimalizacji czasu mnożenia tej macierzy przez wektor.

222 J. Wicijowski

Jan WICIJOWSKI, M.Sc. Electronics and Telecommunications
graduated from AGH University of Science and Technology in Krakow
(2009). Currently he pursues Ph.D. in Electronics on AGH-UST. In his
work at Signal Processing Group he does research on automated
speech recognition and semantic modelling of Polish.

