Joanna Warycha Witold Mielcarek Krystyna Prociów

WPŁYW MODYFIKOWANIA Bi₂O₃ BAREM NA WŁAŚCIWOŚCI MIKROSTRUKTURY WARYSTORÓW ZnO^{*)}

STRESZCZENIE Ba jako dodatek modyfikujący Bi_2O_3 w ceramice z tlenku cynku umożliwia równomierne rozmieszczenie Bi w całym warystorze i hamuje tworzenie się aglomeratów Bi_2O_3 podczas spiekania warystora. Dzięki temu warystor osiąga doskonałe właściwości elektryczne a poziom domieszkowania ceramiki ZnO tlenkami innych metali może być znacznie obniżony. W najbardziej obiecującym przypadku, ilość Bi dodawanego do masy warystorowej była siedem razy mniejsza a całkowita ilość domieszek – trzy razy niższa w porównaniu do powszechnie stosowanego poziomu domieszkowania warystorów.

Słowa kluczowe: BaBiO_{3-x}, ZnO, warystory, mikrostruktura, właściwości elektryczne

^{*)} Praca finansowana z grantu nr N N 510 344 534 przez Ministerstwo Nauki i Szkolnictwa Wyższego.

mgr inż. Joanna WARYCHA, doc. dr hab. inż. Witold MIELCAREK e-mail: warycha@iel.wroc.pl, mielcar@iel.wroc.pl

> mgr. inż. Krystyna PROCIÓW e-mail: kproc@iel.wroc.pl

Pracownia Badań Strukturalnych Instytut Elektrotechniki

PRACE INSTYTUTU ELEKTROTECHNIKI, zeszyt 246, 2010

1. WSTĘP

Warystory są to elementy ceramiczne, przeznaczone do ochrony przed przepięciami urządzeń elektrycznych. Zdolność do ochrony przeciwprzepięciowej wynika z ich charakterystyki prądowo napięciowej V = R (*I*), która charakteryzuje się tym, że kiedy warystor narażany jest na wysokie napięcie jego impedancja spada o kilka rzędów utrzymując chwilowe napięcie na bezpiecznym poziomie. Warystory ZnO są wytwarzane typową technologią, przez zmieszanie ZnO z niewielką ilością tlenków innych metali takich jak Bi, Sb, Co, Mn, Ni. Każdy dodatek tlenku metalu wpływa znacząco na właściwości elektryczne warystorów, ale z punktu widzenia nieliniowych właściwości warystora kluczowe znaczenie ma Bi₂O₃ [1]. Podczas spiekania ziarna ZnO są oddzielane cienką warstwą amorficznego Bi₂O₃ tzw. fazą międzyziarnową zawierającą rozpuszczone w niej tlenki metali (Bi, Zn, Sb, Cr, Co, Mn). W temperaturze 750°C - 850°C zachodzi reakcja pomiędzy ZnO, Bi₂O₃ i Sb₂O₃, w wyniku której powstaje pirochlorowa faza Zn₂Sb₃Bi₃O₁₄, która reaguje z ZnO w 1050°C dostarczając dodatkową ilość ciekłego Bi₂O₃ [2,3]:

$$Bi_{2}(Zn_{4/3}Sb_{2/3})O_{6} + ZnO \Longrightarrow Zn (Zn_{4/3}Sb_{2/3})O_{4} + Bi_{2}O_{3}$$
(1)

Występowanie ciekłego Bi₂O₃ w temperaturach powyżej 740°C przyspiesza proces spiekania warystora i wzrost ziaren ZnO [2, 3, 4]. Przyspieszenie spowodowane jest transportem masy (dyfuzją jonów Zn) i fazy ciekłej w przestrzenie międzyziarnowe [5]. Przenikanie Bi₂O₃, wraz z innymi rozpuszczonymi w nim dodatkami, do obszarów międzyziarnowych wpływa na charakterystykę prądowo-napięciową ceramiki ZnO [6].

Gdy stężenie Bi₂O₃ jest poniżej 0,58 mol%, wykształca się 1 nm warstwa międzyziarnowa Bi₂O₃ a pomiędzy sąsiadującymi ziarnami tworzą się wąskie szyjki, co znacznie przyspiesza proces spiekania warystora, nawet w temperaturze poniżej 740°C [7]. Ta nanometrowa warstwa Bi₂O₃ jest najkorzystniejsza ze względu na właściwości elektryczne warystora. Według Lee i Chiang [8] dla uzyskania nanometrowej warstwy tlenku bizmutu wystarczy dodać do masy warystora 0,11% mol Bi₂O₃. Jednak, ze względu na słaby transport masy w warystorze, konieczne jest dodanie 1% mol Bi₂O₃, co prowadzi do powstawania bezużytecznych elektrycznie aglomeratów Bi₂O₃. (rys. 1).

Aby rozwiązać ten problem, zamiast Bi₂O₃, dodano do warystora BaBiO_{3-x}. Tlenek barowo bizmutowy BaBiO_{3-x} w ceramice warystorowej pełni taką samą funkcję jak faza pirochlorowa. Różnica polega na tym, że ponieważ

Ba nie wchodzi w reakcję z ZnO, Bi₂O₃ uwalniany jest w drodze reakcji z innymi domieszkami warystora.

Rys. 1. Zdjęcie SEM mikrostruktury typowego warystora (marker skali 20µm)

Bar łatwo reaguje z tytanem, dlatego w tej pracy, jako wyzwalacz rozkładu związku barowo bizmutowego BaBiO_{3-x}, został wykorzystany TiO₂, zwykle stosowany w technologii warystorowej do pobudzania wzrostu ziaren.

2. EKSPERYMENT

Związek barowo bizmutowy $BaBiO_{3-x}$ otrzymano przez syntetyzowanie Bi_2O_3 i $Ba(OH)_2$ Warunkiem syntezy $BaBiO_{3-x}$ było utrzymanie stałej temperatury 750°C przez 2 h. Otrzymany w ten sposób związek dodawano wraz z tlenkiem tytanu do warystora.

Warystory zostały wykonane przy użyciu typowej technologii stosowanej w ceramice. Szczegółowy skład próbek został przedstawiony w tabeli 1.

Składnik	BaBiO _{3-x}	TiO ₂	Sb_2O_3	NiO	MnO	Co ₂ O ₃	ZnO
llość	0,2	0,125	0,05	0,5	0,5	0,5	98,125
[mol%]							

TABELA 1Skład masy warystorowej w %mol

Mieszaninę proszku mielono na mokro przez 18 godzin, suszono, następnie dodano do niej wagowo 7% spoiwa i przesiewano przez nylonowe sito. Z tak przygotowanego proszku formowano dyski o średnicy 15 mm, grubości 2,5 mm i masie 1,6 g. Warystory były spiekane przez 1 godzinę w pięciu

różnych temperaturach: 1000°C, 1050°C, 1150°C, 1200°C do 1250°C, próbki pozostawiano w piecu aż do ostygnięcia.

Po nałożeniu srebrnych elektrod na wypolerowane powierzchnie warystorów, przeprowadzono pomiary elektryczne.

Analizę mikrostruktury warystorów wykonano za pomocą mikroskopu skaningowego SEM firmy Jeol JXA-5A.

Proces reakcji BaBiO_{3-x} z TiO₂ obserwowano przy użyciu metody DTA i wysokotemperaturowej przystawki rentgenowskiej DRON-1.

Fazy krystaliczne próbek określano za pomocą rentgenowskiego dyfraktometru proszkowego DRON-2 ze źródłem promieniowania Co K_{α} filtrowanym Fe. Zmierzone fazy zostały zidentyfikowane na podstawie kartoteki PDF.

3. WYNIKI

3.1. Zachowanie się układu BaBiO_{3-x}-TiO₂ podczas obróbki cieplnej

Aby dowiedzieć się, czy właściwe jest stosowanie w warystorze domieszki TiO₂, monitorowano zachowanie się układu BaBiO_{3-x}-TiO₂ podczas obróbki cieplnej za pomocą przystawki wysokotemperaturowej XRD.

Wyniki pomiarów XRD układu BaBiO_{3-x}-TiO₂ są przedstawione na rysunku 2.

Rys. 2. Dyfraktogramy układu BaBiO_{3-x}-TiO₂ zmierzone w różnych temperaturach

Jak wynika z przeprowadzonych badań dla początkowej temperatury 21°C układ BaBiO_{3-x} - TiO₂, wykazywał obecność fazy BaBiO_{2.77} (PDF 38-1151) oraz TiO₂ – (PDF 21-1272 – anatazu). W temperaturze około 700°C refleksy pochodzące od TiO₂ zniknęły, jednak zmiany fazy BaBiO_{2.77} zaobserwowano w nieco wyższych temperaturach. W 800°C faza Ba-Bi również zniknęła, a pojawiły się fazy amorficzne, co może sugerować, że BaBiO_{2.77} i TiO₂ weszły w reakcję. Ten sam kształt krzywej XRD został zarejestrowany w 850°C. Obniżenie temperatury do 825°C nie spowodowało istotnych zmian w składzie krystalicznym próbki. Jednak po ochłodzeniu do temperatury pokojowej, zidentyfikowano β – Bi₂O₃ (PDF 27-50) wraz z niewielką ilością (Bi₂O₃)_{0.8}(BaO)_{0.2} (PDF 32-109).

Powyższe wyniki pozwalają na wyciągnięcie wniosku, że BaBiO_{2.77} i TiO₂ reagują ze sobą. Potwierdza to egzotermiczne maksimum w temperaturze 750°C, który można zauważyć na wykresie DTA (rys. 3).

Rys. 3. Wykres DTA układu BaBiO_{3-x}-TiO₂

3.2. Skład fazowy i mikrostruktura próbek warystora

Warystory ZnO domieszkowane BaBiO_{2.77}, wypalone w temperaturze 1250°C, oraz ich zgłady, które poddano dodatkowo procesowi trawienia termicznego w temperaturze 777°C, zostały poddane badaniu przy pomocy mikroskopu skaningowego. Zdjęcia SEM mikrostruktury warystora przedstawia rysunek 4.

Na rysunku 4a widoczne są jasne skupiska na powierzchni warystora. Są to krystaliczne produkty reakcji pomiędzy ZnO a domieszkami warystora, które zostały przetransportowane na powierzchnię dzięki ciekłemu Bi_2O_3 . Analiza składu chemicznego wykonana na przystawce EDS wykazała obecność w nich takich pierwiastków jak: O - 65,06%, Ti – 5,54%, Co – 0,30%, Zn- 8,40%, Sb – 4.70%, Ba – 14,60% i Bi – 1,40%.

b)

a)

Rys. 4. Zdjęcie SEM mikrostruktury warystora domieszkowanego BaBiO_{2.77} spiekanego w 1250°C, a) zdjęcie powierzchni warystora, b) zdjęcie zgładu poddanego obróbce termicznej w 777°C przez 4 godziny, podziałka 50 mm

Z kolei, dzięki procesowi trawienia termicznego, na rysunku 4b widoczne są wyodrębnione granice ziaren warystora i fazy międzyziarnowe. Jak widać, w porównaniu z typowym warystorem (rys. 1), warstwy fazy międzyziarnowej warystora domieszkowanego BaBiO_{2.77} są cienkie i wolne od aglomeratów Bi₂O₃.

Wyniki pomiarów XRD warystorów domieszkowanych BaBiO_{2.77} są przedstawione na rysunku 5.

Rys. 5. Dyfraktogram powierzchni warystora domieszkowanego BaBiO_{2.77} spiekanego w temperaturze 1150°C i 1250°C

Analiza rentgenowska powierzchni warystora w temperaturze pokojowej wykazuje, że obok podstawowej fazy ZnO (PDF 36-1451) występuje na niej tytanian baru (PDF 34-129), chociaż, z powodu obecności innych składników w sieci krystalicznej, jego ekstrema na wykresie są mniej lub bardziej przesunięte. Obecność tytanianu baru w warystorze, jest dowodem na to, że BaBiO_{2.77} i TiO₂ reagują ze sobą uwalniając Bi₂O₃ zgodnie z reakcją:

$$2BaBiO_3 + 2TiO_2 \rightarrow 2BaTiO_3 + Bi_2O_3$$
⁽²⁾

Jak widać na rysunku 6 jednorodna mikrostruktura warystora domieszkowanego BaBiO_{2.77} ma odzwierciedlenie w doskonałych właściwościach elektrycznych warystora.

Dla zmierzonych charakterystyk prądowo napięciowych, zostały obliczone współczynniki nieliniowości α , które wynosiły od 40 do 60 w zakresie prądów od 0,01 do 100 mA/cm². Zmiany starzeniowe charakterystyki U(I) warystora zostały przedstawione w tabeli 2

TABELA 2

Zmiany właściwości elektrycznych warystora pod wpływem działania prądu przemiennego (0,56 V_{sk}) w temperaturze 115°C przez 500 godzin

	$U_{10\mu A}$	α	$U_{100\mu A}$	α	U_{1} mA	α	U_{10} mA	U _{1mA/1mm}
Wyjściowe wartości	415	69	450	58	447	60	465	193
Wartości po starzeniu	351	25	389	43	411	55	430	179

Jak widać, zmiany napięć nie przekraczają 10% wartości początkowej, co jest akceptowalne z punktu widzenia funkcjonalności warystorów.

4. WNIOSKI

Dodatek BaBiO_{2.77} do ceramiki warystorowej ZnO wpływa na równomierne rozłożenie Bi w warystorze i ogranicza powstawanie aglomeratów Bi₂O₃ podczas procesu wytwarzania warystora. W wyniku czego warystor osiąga doskonałe właściwości elektryczne przy niższym poziomie domieszkowania tlenkami innych metali. Najbardziej obiecujący jest skład warystora z siedmiokrotnie mniejszą zawartością Bi i całkowitą sumą wszystkich dodatków trzy razy mniejszą, w porównaniu z powszechnie stosowanymi ilościami tych domieszek w warystorach.

Badania produktów reakcji BaBiO_{3-x} z TiO₂ przy użyciu wysokotemperaturowej przystawki rentgenowskiej wykazały, że w układzie BaBiO_{3-x} + TiO₂ refleksy pochodzące od TiO₂ znikają w temperaturze około 700°C, ale zmiana fazy BaBiO_{3-x} była obserwowana w wyższych temperaturach wraz z pojawieniem się fazy amorficznej. Egzotermiczny pik na wykresie DTA w 750°C sugeruje, że BaBiO_{3-x} i TiO₂ wchodzą w reakcję. Jednak produkty tej reakcji muszą być w formie subkrystalicznej lub są rozpuszczone w Bi₂O₃.

Tezę, że BaBiO_{3-x} wchodzi w reakcję z TiO₂ udowadnia obecność BaTiO₃ na powierzchni warystora domieszkowanego BaBiO_{2.77}.

LITERATURA

- 1. Kosman M.S., Petcsold E.G.: O wozmoznosti izgotowlenija simietriczeskich varistorov iz okisi cinka c primiestju okosi bizmuta., Uczonyje zapiski LGPT im. A.I. Gercena 207 s. 191-96, 1961 r.
- 2. Wong J., Rao P., Koch E.F.: Nature of an intergranular thin-film phase in a highly nonohmic metal oxide varistor, J. Appl. Phys., 46 [4] p. 1827-30, 1975 r.
- 3. Wong J.: Sintering and varistor characteristics of ZnO-Bi₂O_{3.}, J. Apll. Phys., 51 [8] p .4453-59, 1980 r.
- Barsoum M.W., Elkind A.: Low breakdown voltage varistors by grain boundary diffusion of molten Bi2O3 in ZnO., J. Am. Ceram. Soc. 79 [4] p.962-66, 1996 r.
- 5. Chu M-Y., De Jonghe L-C., Lin M. K. Lin F.J.: Pre-coarsening to improve microstructure and sintering of powder compacts., J. Am. Ceram. Soc. 74 [11] p. 2902-11, 1991 r.
- Olsson E., Dunlop G.L.: The effect of Bi₂O₃ content on the microstructure and electrical properties of ZnO varistor materials., Department of Phisics. Chalmers University of Technology., Goteborg S-412 96.
- Luo J., Wang H., Chiang Y-M.: Origin of solid-state activated sintering in Bi₂O₃ doped ZnO. J. Am. Ceram. Soc. 82 [4] p. 916-20, 1999 r.
- Lee J.R., Chiang Y.M.: Bi segregation at ZnO grain boundaries in equilibrium with Bi₂O₃-ZnO liquid., Solid State Ionics 75 p. 79-88, 1995 r.
- Mielcarek W., Bernik S., Prociów K.: Peculiarities of ZnO based varistor ceramics doped with Ba-Bi compounds Second International Conference on Advances in Processing, Testing and Application of Dielectric Materials, APTADM 2004, Wrocław, 15-17 September 2004 r.
- Mielcarek W., Prociów K., Warycha J: "ZnO varistors with nanometr intergranular layer", 31 st International Convention MIPRO 2008, Opatija, Croatia 26-30.05.2008 r.

Rękopis dostarczono dnia 11.05.2010 r. **Opiniował: dr inż. Jacek Perz**

EFFECT OF Ba MODIFIED Bi₂O₃ ON MICROSTRUCTURE PROPERTIES OF ZnO VARISTORS

Joanna WARYCHA, Witold MIELCAREK Krystyna PROCIÓW

ABSTRACT Doping ZnO varistor ceramics with Ba modified Bi_2O_3 , instead of pure Bi_2O_3 , enables the uniform distribution of Bi in varistor body and restrains formation of the Bi_2O_3 agglomerates during varistor processing. As the result the varistor attains the excellent electrical properties at lower rate of metal oxide additives. In the most promising varistor composition the amount of Bi was seven times lower and the total of other dopants three times lower, than in varistors made by commonly used technology

Mgr inż. Joanna WARYCHA ukończyła studia na Akademii Górniczo-Hutniczej w Krakowie - Wydział Inżynierii Materiałowej i Ceramiki, specjalność Ceramika i Szkło. Obecnie pracuje na stanowisku asystenta w Pracowni Badań Strukturalnych Instytutu Elektrotechniki we Wrocławiu.

Dr hab. inż. Witold MIELCAREK w roku 1970 ukończył studia na Wydziale Łączności Politechniki Wrocławskiej. Jest docentem we Wrocławskim Oddziale Instytutu Elektrotechniki. Specjalność – materiałoznawstwo elektrotechniczne, technologia materiałów elektrotechnicznych.

Mgr inż. Krystyna PROCIÓW ukończyła Wydział Ochrony Środowiska Politechniki Wrocławskiej. Obecnie jest specjalistą – technologiem w Instytucie Elektrotechniki Oddział Wrocław.