PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Discharge channel displacement simulation in AC arc

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Results of 3-D of discharge channel displacement simulation, acquired by means of the Fluent program during one current half-period of AC arc, indicate that the obtained images of the phenomenon are qualitatively similar to those, recorded with a high-speed digital camera, while the computer simulation enables much a more comprehensive analysis of the acquired data. In addition to selected arc simulation frames and corresponding distributions of mass velocity vectors and current density vectors on a plane, the distributions of temperature, current density and mass velocity values are presented on the axis of the electrode arrangement model. The composite motion (continuous and jumping) of discharge channels was analyzed, taking into account mass displacement and matter state changes.
Rocznik
Strony
35--49
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Department of Electrical Apparatus, Technical University of Lodz, B. Stefanowskiego 18/22, 90-924 Łódź, tdaszek@p.lodz.pl
Bibliografia
  • [1] Shanqiang Gu, Jinliang He, Bo Zhang et al. Movement Simulation of Long Electric Arc Along the Surface of Insulator String in Free Air. IEEE Transactions on Magnetics 42(4): 1359-1362 (2006).
  • [2] S. Tanaka, K. Sunabe, Study on simple simulation model for dc free arc behavior in long gap. Proc. 14th Int. Conf. Gas Discharges and Their Applications 1: 119-122 (2002).
  • [3] W. Tarczyński, Kinetics of low-voltage switching arc. Dissertations No. 225, Scientific Journals of Technical University of Lodz 746, 159 (1995).
  • [4] W. Tarczyński, Electrodynamics of electrical apparatus. Publication series: Advances in High-Voltage Technique. The Committee on Electrical Engineering of the Polish Academy of Sciences. Technical University of Lodz Publishers: 307, Łódź 2007.
  • [5] N.M. Schnurr, J.F. Kerrisk, J.V. Parker, Numerical predictions of railgun performance including the effects of ablations and arc drag. IEEE Transactions on Magnetics MAG-22 6: 1733 (1986).
  • [6] H.-G. Stäblein, Arcs in cross flow. Phenomena in Ionized Gases. Invited Lectures: 341-359, Berlin 1977.
  • [7] T. Daszkiewicz, Analysis of dynamic states of discharge channels between plasma jets in AC electric arc. Doctor’s thesis. Department of Electrical Apparatus, Technical University of Lodz 2010.
  • [8] W. Tarczyński, T. Daszkiewicz, Dynamics of discharge channel displacement in AC arcs. Arch. Of Electr. Eng. 58(3-4): 127-142 (2009).
  • [9] H.H. Maecker, Principles of arc motion and displacement. Proc. of the IEEE 59(4): 439-449 (1971).
  • [10] H.H. Maecker, Motion of arcs. Proc. of Int. Conf. on Phen. Ion. Gases.: 34-45, Mińsk 1981.
  • [11] H. Rachard, P. Chevrier, D. Henry, D. Jeandel, Numerical study of coupled electromagnetic and aerothermodynamic phenomena in a circuit breaker electric arc. International Journal of Heat and Mass Transfer 42: 1723-1734 (1999).
  • [12] F. Karreta, M. Lindmayer, Simulation of arc motion under conditions of low voltage switchgear. Proc. of the XII Int. Conf. on Gas Discharges and their Applications: I-135-I-138, Germany 1997.
  • [13] D. Bernardi, V. Colombo, E. Ghedini et al. Three-Dimensional Time-Dependent Modeling of Magnetically Deflected Transferred Arc. IEEE Transactions on Plasma Science 33(2): 428-429 (2005).
  • [14] J.-J. Gonzalez, P. Freton, A. Gleizes, Theoretical study of hydrodynamic flow in thermal plasma devices. Czechoslovak Journal of Physics 56 (Suppl. B): B721-B732 (2006).
  • [15] X. Franceries, F. Lago, J.-J. Gonzalez et al. 3-D Visualization of a 3-D Free-Burning Arc Model Deflected by External Magnetic or Convective Forces. IEEE Transactions on Plasma Science 33(2): 432-433 (2005).
  • [16] F. Lago, P. Freton, J.-J. Gonzalez, Numerical Modeling of the Interaction Between an Electric Arc and a Material: Application to the Lightning Stroke of an Aircraft. IEEE Transactions on Plasma Science 33(2): 434-435 (2005).
  • [17] Ch. Rümpler, F. Reichert, H. Stammberger, P. Terhoeven, F. Berger, Numerical study of the electrical arc movement supported by experiments. ICEC: 22-27 (2006).
  • [18] M. Masqu`ere, P. Freton, J.-J. Gonzalez, Theoretical study in two dimensions of the energy transfer between an electric arc and an anode material. J. Phys. D: Appl. Phys. 40: 432-446 (2007).
  • [19] X. Zhang, J. Zhang, E. Gockenbach, Calculation of pressure and temperature in medium-voltage electrical installations due to fault arcs. J. Phys. D: Appl. Phys. 41: 195-206 (2008).
  • [20] J. Heberlein, A.B. Murphy, Thermal plasma waste treatment. J. Phys. D: Appl. Phys. 41, 053001 (2008).
  • [21] E. Domejean, P. Chevrier, C. Fievet, P. Petit, Arc-wall interaction modelling in a low-voltage circuit breaker. J. Phys. D: Appl. Phys. 30: 2132-2142 (1997).
  • [22] J. Haidar, Non-equilibrium modelling of transferred arcs. J. Phys. D: Appl. Phys. 32: 263-272 (1999).
  • [23] M.A. Ramırez, G. Trapaga, J. McKelliget, A comparison between two different numerical formulations of welding arc simulation. Modelling Simul. Mater. Sci. Eng. 11: 675-695 (2003).
  • [24] X. Li, D. Chen, R. Dai, Y. Geng, Study of the Influence of Arc Ignition Position on Arc Motion in Low-Voltage Circuit Breaker. IEEE Transactions on Plasma Science 35(2) (2007).
  • [25] F. Reichert, F. Berger, Ch. Rumpler et al. Experimental studies of the arc behaviour in low voltage arc rail arrangements supporting numerical simulations. IEEE Holm Conference on Electrical Contacts: 34-39 (2006).
  • [26] S.V. Patankar, Numerical Heat Transfer and Fluid Flow. Series in Computational Methods in Mechanics and Thermal Science, New York, Hemisphere Publishing Corporation (1980).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0057-0066
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.