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INDUCTION MACHINE PULSATING TORQUE ANALYSIS 
 

Abstract:  This article contains a pulsating torque calculation of 3-phase induction machine with power 1.1kW 
from electromagnetic field. Whole analysis is done by finite element method in ANSYS. The torque is 
calculated via a circular path integral of the Maxwell stress tensor. The Maxwell stress tensor provides a 
convenient way of computing forces acting on bodies by evaluating a surface integral.  
 
 
1. Introduction  
If it is needed to calculate mechanical torque on 
a body in a magnetic field it is suitable to use 
TORQ2D command. The body must be 
completely surrounded by air – symmetry 
permitted, and a closed path passing through 
the air elements surrounding the body must be 
available. A counterclockwise ordering of 
nodes on the PATH command will give the 
correct sign on the torque result. The calculated 
torque is stored in the parameter torque. A node 
plot showing the path is produced in interactive 
mode. The torque is calculated using a Maxwell 
stress tensor approach. Classical approach for 
pulsating torque analysis and calculation is 
mentioned in [1], [3] and [7]. Path operations 
are used for the calculation, and all path items 
are cleared upon completion.  

TORQSUM invokes an ANSYS macro that 
summarizes the Maxwell and virtual work 
torque values. The element components must 
have had appropriate Maxwell or virtual work 
boundary conditions established in the 
preprocessor prior to solution in order to 
retrieve torques. These boundary conditions are 
used for subsequent force and torque 
calculations during solution. Magnetic virtual 
displacements are applied to nodes of elements 
in the components, and Maxwell surface flags 
are applied to air elements adjoining the 
element components. Incorrect force and torque 
calculations will occur for components sharing 
adjacent air elements. The torque values are 
stored on a per-element basis for the adjacent 
air layer elements surrounding the components 
and are retrieved and summed by the macro.  
Torque calculations are valid for 2-D planar 
analysis only. For 2-D harmonic analysis, force 
and torque represent time-average values.  

The Maxwell stress tensor is used to determine 
forces on magnetic regions – element output 
quantity FMX .This force calculation is 
performed on surfaces of air material elements 
which have a nonzero face loading specified. 
For the 2-D application, this method uses 
extrapolated field values and results in the 
following numerically integrated surface 
integral: 
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2. Initial conditions 
Also it is necessary to set a few conditions to 
the correct function of solver (Table 1-3). 

 
Fig. 1: MESH with counterclockwise PATH. 
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Table 1: Material definition 
 

Material Properties 
Sheets 
Copper 
Air-gap 
Shaft 

Steel M54 
µr=0.99999 
µr=1.00000 
µr=150 

 

Table 2: Setting for nominal slip (SN) 
 

Set parameter Value Unit 
Power 1238 W 
Voltage 415.14 V 
Slip -5 % 
Torque -4,985 Nm 
Stator current rad0912.29837.2 −∠  A 
Rotor current rad17786.0162.246 ∠  A 
 

Table 3: Setting for nominal torque (TN) 
 

Set parameter Value Unit 
Power 1030 W 
Voltage 416.35 V 
Slip -3.61 % 
Torque -3,834 Nm 
Stator current rad0447.24730.2 −∠  A 
Rotor current rad13899.0704.179 ∠  A 
 

3. Analysis results   
CASE: NOMINAL TORQUE  

 
Fig. 2: Pulsating torque behavior per one rotor 
rotation (1step/18degree). 
 
where: TM – measured torque 

TC – torque calculated by Maxwell 
stress tensor 
TAV – average value of torque TC 

 

 
Fig. 3: Magnetic field distribution – Flux lines 
(maximal value of pulsating torque). 

 
 
 

 
Fig. 4: Magnetic field distribution – Flux 
density B (maximal value of pulsating torque). 

 

 
Fig. 5: Magnetic field distribution – B in the 
center of the air-gap (maximal value of 
pulsating torque). 
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CASE: NOMINAL SLIP 

 
Fig. 6: Pulsating torque behavior per one rotor 
rotation (1step/18degree). 
 

where: TM – measured torque 
TC – torque calculated by Maxwell 
stress tensor 
TAV – average value of torque TC 

 

 
Fig. 7:  Magnetic field distribution – Flux lines 
(maximal value of pulsating torque). 

 

 
Fig. 8:  Magnetic field distribution – Flux 
density B (maximal value of pulsating torque). 

 

 
Fig. 9:  Magnetic field distribution – B in the 
center of the air-gap (maximal value of 
pulsating torque). 

4. Conclusion   
The torque measurement and calculation was 
done for 3-phase induction machine with power 
1.1kW working as a generator for nominal slip 
sN and nominal torque TN. Error of resultant 
torque, it means error between measured value 
and average value of torque calculation by 
Maxwell stress tensor is less than 1.6%.  

This procedure could be used for a new design 
of induction generators, because it is built on 
non-linear equivalent circuit parameters [6]. 

The magnetic flux density average values for 
some important part of magnetic circuit: 

 
BSY 

[T] 
BRY 

[T] 
BSH 

[T] 
BRH 

[T] 
BAG 

[T] 
TN 1.18 1.72 1.19 0.86 0.65 

sN 1.22 1.75 1.27 0.95 0.69 
 

where, BSY is magnetic density in stator yoke, 
BRY is magnetic density in rotor yoke, BSH is 
magnetic density in stator head, BRH is magnetic 
density in rotor head, BAG is magnetic density in 
air gap. 
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