PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Poly(ε-caprolactone) urethane/calcium carbonate composite porous scaffolds for bone tissue engineering

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Porowate podłoża z kompozytu poli(ε-kaprolaktono)uretanu i węglanu wapnia przydatne w inżynierii tkanki kostnej
Języki publikacji
EN
Abstrakty
EN
Porous biomaterials have proved to be important for bone replacement and regeneration. Many porous polymers, ceramics and polymer-bioceramic composites have been prepared for orthopedic applications. Poly(ε-caprolactone) is commonly used as a soft segment in polyurethanes, known to be biocompatible, slowly hydrolytically and enzymatically degradable. An aliphatic isocyanate and a poly(ε-caprolactone) diol were used for fabrication of polyurethanes to prepare porous scaffolds. Scaffolds made from these polyurethanes were highly elastic, with good biocompatibility, however the process of degradation was too slow and bioactivity was too low. The way of minimizing the problems of porous polyurethane scaffolds could be the usage of a biodegradable polymer/bioactive ceramic composite. In the present work, two types of foam scaffolds were fabricated by the salt leaching/polymer coagulation method. The first type was made from PUR/calcium carbonate composite obtained in a polymerization process, the second type from PUR and calcium carbonate mixed during the process of creating pores. Poly(ε-caprolactone) urethane and the PUR/calcium carbonate composites were synthesized without the use of solvents and catalysts. Introduction of 5% aragonite and calcite into the PUR matrix during polymerization causes a significant increase of the foams stiffness.
PL
Porowate biomateriały pełnią ważną rolę w zastępowaniu i regeneracji kości. Wiele rodzajów porowatych polimerów, ceramiki i kompozytów ceramika-polimer jest wykorzystywanych w ortopedii. Poli(ε-kaprolaktono)diol jest często używany jako segment giętki w syntezie poliuretanów (PUR), jest on biokompatybilny, powoli rozkłada się w wyniku procesów degradacji hydrolitycznej i enzymatycznej. Ten poliol i alifatyczny izocyjanian zostały użyte do wytworzenia porowatych rusztowań do zastosowań ortopedycznych. Rusztowania takie cechuje wysoka elastyczność i dobra biokompatybilność, ale często proces ich degradacji okazuje się zbyt powolny i bioaktywność za niska. Sposobem na wyeliminowanie tego problemu jest zastosowanie kompozytów z biodegradowalnych polimerów i bioaktywnej ceramiki. W przedstawionej pracy metodą koagulacji polimeru z roztworu w połączeniu z wymywaniem soli wytworzono dwa typy porowatych rusztowań. Pierwszy typ kompozytów z PUR i węglanu wapnia uzyskano in situ podczas polimeryzacji, drugi w trakcie procesu kształtowania porów. Poli(ε-kaprolaktono)uretan i kompozyty PUR/węglan wapnia były syntezowane bez użycia rozpuszczalników i katalizatorów. Dodatek do poliuretanu w trakcie polimeryzacji 5% mas. aragonitu lub kalcytu prowadził do wzrostu sztywności otrzymanych pianek.
Czasopismo
Rocznik
Strony
3--15
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • Warsaw University of Technology, Faculty of Materials Science & Engineering, Warsaw
Bibliografia
  • 1. Smith L., Ceramic-plastic material as a bone substitute. Archives of Surgery, 87, 1963, 653-661.
  • 2. Burg K.J.L., Porter S., Kellam J. F., Biomaterial developments for bone tissue engineering, Biomaterials 21 (2000) 2347-2359.
  • 3. John K., Borchardt J. K., Porous structures for tissue engineering, Materials Today 12, 2007, 26.
  • 4. Chen G., Ushida T., Tateishi T., Development of biodegradable porous scaffolds for tissue engineering, Materials Science and Engineering C17, 2001, 63-69.
  • 5. Wu L., Ding J., In vitro degradation of three-dimensional porous poly(d,l-lactide-coglycolide) scaffolds for tissue engineering, Biomaterials 25 (2004) 5821-5830.
  • 6. Jones J. R., Hench L. L., Regeneration of trabecular bone using porous ceramics Current Opinion in Solid State and Materials Science 7 (2003) 301-307.
  • 7. Miao X., Hu Y., Liu J., Wong A.P., Porous calcium phosphate ceramics prepared by coating polyurethane foams with calcium phosphate cements, Materials Letters 58 (2004) 397- 402.
  • 8. Kalita S. J., Bhardwaj A., Bhatt H. A., Nanocrystalline calcium phosphate ceramics in biomedical engineering, Materials Science and Engineering C 27(2007)441-449.
  • 9. Pilliar R.M., Filiaggi M.J., Wells J.D., Grynpas M.D., Kandel R.A., Porous calcium polyphosphate scaffolds for bone substitute applications - in vitro characterization, Biomaterials 22 (2001) 963-972.
  • 10. Rezwan K., Chen Q.Z., Blaker J.J., Boccaccini A.R. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering, Biomaterials 27 (2006) 3413-3431.
  • 11. Wang M., Developing bioactive composite materials for tissue replacement, Biomaterials 24 (2003) 2133-2151.
  • 12. Miao X., Tan L.-P., Tan L.-S., Huang X., Porous calcium phosphate ceramics modified with PLGA-bioactive glass, Materials Science and Engineering C 27 (2007) 274-279.
  • 13. Korventausta J., Jokinen M., Rosling A., Peltola T., Yli-Urpo A., Calcium phosphate formation and ion dissolution rates in silica gel-PDLLA composites, Biomaterials 24 (2003) 5173-5182.
  • 14. Campos J. S. C. de, Ribeiro A. A., Xavier Cardoso C. X., Preparation and characterization of PVDF/CaCO3 composites, Materials Science and Engineering B 136 (2007) 123-128.
  • 15. Fujihara K., Kotaki M., Ramakrishna S., Guided bone regeneration membrane made of polycaprolactone/ calcium carbonate composite nano-fibers, Biomaterials 26 (2005) 4139-4147.
  • 16. Chen G., Sato T, Tanaka J., Tateishi T., Preparation of a biphasic scaffold for osteochondral tissue engineering, Materials Science and Engineering C 26(2006)118-123.
  • 17. Lickorish D., Guan L., Davies J.E., A three-phase, fully resorbable, polyester/calcium phosphate scaffold for bone tissue engineering: Evolution of scaffold design Biomaterials 28 (2007) 1495-1502.
  • 18. Seregin V. V., Coffer Jeffery L., Biomineralization of calcium disilicide in porous polycaprolactone scaffolds, Biomaterials 27 (2006) 4745-4754.
  • 19. Maeda H., Maquet V., Chen Q.Z., Kasuga T., Jawad H., Boccaccini A.R., Bioactive coatings by vaterite deposition on polymer substrates of different composition and morphology, Materials Science and Engineering C 27 (2007) 741-745.
  • 20. Jie W., Yubao L., Tissue engineering scaffold material of nano-apatite crystals and polyamide composite, European Polymer Journal 40 (2004) 509-515.
  • 21. Nair L. S., Laurencin C. T., Biodegradable polymers as biomaterials, Prog. Polym. Sci. 32 (2007) 762-798.
  • 22. Lelah M.D., Cooper S.L., Polyurethane in medicine. Boca Raton, FL: CRC Press, Inc.; 1986.
  • 23. Lamba N.M.K., Woodhouse K.A., Cooper S.L., Polyurethanes in biomedical applications. Boca Raton, FL: CRC Press, Inc.; 1997.
  • 24. Danielsson C., Ruault S., Simonet M., Neuenschwander P., Frey P. Polyesterurethane foam scaffold for smooth muscle cell tissue engineering. Biomaterials 2006; 27(8): 1410-5.
  • 25. Guan J.J., Fujimoto K.L., Sacks M.S., Wagner W.R., Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials 2005; 26(18): 3961-71.
  • 26. Engelberg I., Kohn J., Physico-mechanical propperties of degradable polymers used in medical applications: A comparative study. Biomaterials 1991;12(3):292-304.
  • 27. Fromstein J.D., Woodhouse K.A,. Elastomeric biodegradable polyurethane blends for soft tissue applications. J. Biomater. Sci. Polym. Ed. 2002; 13: 391-406.
  • 28. Gorna K., Polowinski S., Gogolewski S., Synthesis and characterization of biodegradable poly(z-caprolactone urethanes). I. The effect of the polyol molecular weight, catalyst and the chain extender on the molecular and physical characteristics. J. Polym. Sci., A: Polym Chem 2002; 240: 156-70.
  • 29. Gorna K., Gogolewski S., Biodegradable polyurethanes for implants. II. In vitro degradation and calcification of materials from poly(ecaprolactone)-poly(ethylene oxide) diols and various chain extenders. J. Biomed. Mater. Res. 2002; 60: 592-606.
  • 30. Marchant R.E., Zhao Q., Anderson J.M., Hiltner A., Degradation of a poly(ether urethane urea) elastomer: infrared and XPS studies. Polymer 1987; 28: 2032-9.
  • 31. Szycher M., Poirier V.L., Dempsey D.J., Development of an aliphatic biomedical-grade polyurethane elastomer. J. Elastom. Plast. 1983; 15:81-95.
  • 32. Pinchuk L., A review of the biostability and carcinogenity of polyurethanes in medicine and the new generation of 'biostable' polyurethanes. J. Biomat. Sci.-Polym. E 1994; 6: 225-67.
  • 33. Tang Y.W., Labow R.S., Santerre J.P., Isolation of methylene dianiline and aqueous-soluble biodegradation products from polycarbonate-polyurethanes. Biomaterials 2003; 24: 2805-19.
  • 34. Til H.P., Falke H.E., Prinsen M.K., Willems M.I., Acute and subacute toxicity of tyramine, spermidine, spermine, putrescine and cadaverine in rats. Food. Chem. Toxicol. 1997; 35: 337-48.
  • 35. Bogdanov B., Toncheva V, Schacht E., Finelli L., Sarti B., Scandola M., Physical properties of poly(ester-urethanes) prepared from different molar mass polycaprolactone-diols. Polymer 1999; 40:3171-82.'
  • 36. Pitt C.G., Poly-P-caprolactone and its copolymers. In: Chasin M., Langer R., editors. Biodegradable polymers as drug delivery systems. New York: Marcel Dekker; 1990. p. 71-120.
  • 37. Bil M., Ryszkowska J., Sienkiewicz-Łatka E., Lewandowska-Szumiel M., Kurzydlowski K.J.; Influence of soft domains' size on biocompatibility prepared polyurethanes; The International Journal of Artificial Organs 28 (2005) 4
  • 38. Ryszkowska J., Bil M., Woźniak P., Lewandowska-Szumiel M., Kurzydłowski K.J., Influence of catalyst type on biocompatibility of polyurethanes, Materials Science Forum III, Vols. 514-516, May 2006, 887-891
  • 39. Bil M., Ryszkowska J., Roether J. A., Bretcanu O., Boccaccini A.R., Bioactivity of polyurethane-based scaffolds coated with Bioglass®particles; Biomed. Mater. 2 (2007) 93-101
  • 40. Maeda H., Kasuga T., Nogami M., Hibino Y, Hata K., Ueda M., Ota Y, Biomimetic apatite formation on poly(lactid acid) composites containing calcium carbonates. J. Mater. Res. 2002;17; 727-30.
  • 41. Kokubo T., Kushitani H., Sakka S., Kitsugi T., and Yamamuro T., Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J. Biomed. Mater. Res., 24, 6 (1990), 721-734.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0054-0080
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.