PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kinetics of nanocrystalline iron nitriding

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nitriding of nanocrystalline iron was studied under the atmosphere of pure ammonia and in the mixtures of ammonia - hydrogen - nitrogen at temperatures between 350°C and 500°C using thermogravimetry and x-ray diffraction. Three stages of nitriding were observed and have been ascribed to the following schematic reactions: (1) α-Fe → γ-Fe4N, (2) γ- Fe4N → ε - Fe3N and (3) ε - Fe3N → ε - Fe2N. The products of these reactions appeared in the nitrided nanocrystalline iron not sequentially but co-existed at certain reaction ranges. The dependence of a reaction rate for each nitriding stage on partial pressure of ammonia is linear. Moreover, a minimal ammonia partial pressure is required to initiate the nitriding at each stage.
Rocznik
Strony
38--43
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
autor
  • Institute of Chemical and Environment Engineering, West Pomeranian University of Technology, ul. Pułaskiego 10,70-322 Szczecin, dmoszynski@ps.pl
Bibliografia
  • 1. VDI (1990). VDI – Lexikon Werkstofftechnik. Dusseldorf: VDI-Verlag.
  • 2. Bell, T. (1977). Source Book on Nitriding (pp. 266 – 278). Metals Park: American Society of Metals.
  • 3. Mongis, J., Peyre, J. P., & Tournier, C. (1984). Nitriding of microalloyed steels. Heat Treatment of Metals. 11(3), 71 – 75.
  • 4. (2006). Nanomaterials Handbook. Boca Raton: CRC/Taylor & Francis.
  • 5. Gu, J. F., Bei, D. H., Pan, J. S., Lu, J., & Lu, K. (2002). Improved nitrogen transport in surface nanocrystallized lowcarbon steels during gaseous nitridation. Materials Letters. 55, 340 – 343.
  • 6. Tong, W. P., Tao, N. R., Wang, Z. B., Zhang, H. W., Lu, J., & Lu, K. (2004). The formation of JJ-Fe3-2N phase in a nanocrystalline Fe. Scripta Materialia. 50, 647-650.
  • 7. Tong, W. P., Liu, C. Z., Wang, W., Tao, N. R., Wang, Z. B., Zuo, L., & He, J. C. (2007). Gaseous nitriding of iron with a nanostructured surface layer. Scripta Materialia. 57, 533 – 536.
  • 8. Schaaf, P. (2002). Laser nitriding of metals. Prog. Mater. Sci.. 47, 1 – 161.
  • 9. Nishimaki, K., Ohmae, S., Yamamoto, T. A., & Katsura, M. (1999). Formation of iron-nitrides by the reaction of iron nanoparticles with a stream of ammonia. Nanostructured Materials. 12, 527 – 530.
  • 10. Inia, D. K., Vredenberg, A. M., Habraken, F. H. P. M., & Boerma, D. O. (1999). Nitrogen uptake and rate-limiting step in low-temperature nitriding of iron. Journal of Applied Physics. 86(2), 810 – 816.
  • 11. Wu, X. L., Zhong, W., Tang, N. J., Jiang, H. Y., Liu, W., & Du, Y. W. (2004). Magnetic properties and thermal stability of nanocrystalline o-Fe3N prepared by gas reduction-nitriding method. J. Alloy. Comp. 385, 294 – 297. DOI: 10.1016/ j.jallcom.2004.04.127.
  • 12. Jiraskova, Y., Havlicek, S., Schneeweiss, O., Perina, V., & Blawert, C. (2001). Characterization of iron nitrides prepared by spark erosion, plasma nitriding, and plasma immersion ion implantation. Journal of Magnetism and Magnetic Materials. 234, 477 – 488.
  • 13. Lin, C.-K., Chen, G.-S., Chen, J.-S., Chin, T.-S., & Lee, P.-Y. (2001). Characterization of iron nitride powders formed by mechanical alloying and atmospheric heat treatment techniques. J. Chin. Inst. Eng. 24(6), 755 – 762.
  • 14. Schaaf, P. (1998). Iron nitrides and laser nitriding of steel. Hyperfine Interactions. 111, 113 – 119.
  • 15. Shinno, H., Uehara, M., & Saito, K. (1997). Synthesis of o"-Fe16N2 iron nitride by means of nitrogen-ion implantation into iron thin films. J. Mater. Sci. 32, 2255 – 2261.
  • 16. Kunze, J. (1990). Nitrogen and carbon in iron and steel thermodynamics. Berlin: Akademie-Verlag.
  • 17. Lakhtin, J. M., & Kogan, J. D. (1976). Azotirovanie stali. Moskva: Masinostroenie.
  • 18. Lehrer, E. (1930). The equilibrium, iron – hydrogen – ammonia. Z. Electrochem. 36, 383 – 392.
  • 19. Wohlschloegel, M., Welzel, U., & Mittemeijer, E. J. (2007). Unexpected formation of ((iron nitride by gas nitriding of nanocrystalline o-Fe films. Applied Physics Letters. 91, 141901.
  • 20. Arabczyk, W., & Wróbel, R. (2003). Study of the Kinetics of Nitriding of Nanocrystalline Iron using TG and XRD methods. Sol. State Phenom. 94, 185 – 188.
  • 21. Cao, M., Wang, R., Fang, X., Cui, Z., Chang, T., & Yang, H. (2001). Preparing H'-Fe4N ultrafine powder by twice-nitriding method. Powder Technology. 115, 96-98.
  • 22. Arabczyk, W., & Jakrzewska, M. (1995). The nitriding kinetics of fine-crystalline k-Fe. In: Advanced materials and technologies: 14th International Scientific Conference (pp. 21 – 24). Gliwice: Committee of Metallurgy of the Polish Academy of Science.
  • 23. Arabczyk, W., & Wróbel, R. (2003). Study of the kinetics of reduction of the nanocrystalline iron nitrides. Annals of Polish Chemical Society. 3(3), 1065 – 1069.
  • 24. Opalińska, A., Leonelli, C., Łojkowski, W., Pielaszek, R., Grzanka, E., Chudoba, T., Matysiak, H., Wejrzanowski, T., & Kurzydłowski, K. J. (2006). Effect of Pressure on Synthesis of Pr-Doped Zirconia Powders Produced by Microwave-Driven Hydrothermal Reaction. J. Nanomater. 2006(Article ID 98769), 1 – 8. DOI: 10.1155/JNM/2006/98769.
  • 25. Schloegl, R. (1991). In: J. R. Jennings, Catalytic Ammonia Synthesis (p. 19). New York: Plenum Press.
  • 26. Du Marchie van Voorthuysen, E. H., Chechenin, N. C., & Boerma, D. O. (2002). Low-Temperature Extention of the Lehrer Diagram and the Iron-Nitrogen Phase Diagram. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 33A, 2593 – 2598.
  • 27. Arabczyk, W., & Zamłynny, J. (1999). Study of the ammonia decomposition over iron catalysts. Catal. Lett. 60(3), 167 – 171.
  • 28. Love, K. S., & Emmett, P. H. (1941). The Catalytic Decomposition of Ammonia over Iron Synthetic Ammonia Catalysts. J. Amer. Chem. Soc. 63, 3297 – 3308.
  • 29. Logan, S. R., Moss, R. L., & Kemball, C. (1958). The Catalytic Decomposition of Ammonia on Evaporated Iron Films. Trans. Farad. Soc. 54, 922 – 930.
  • 30. Pulkkinen, R. E. E. (1982). Kinetics of nitridation of -irons containing chromium, molybdenum, and silicon in ammonia – hydrogen mixtures. Metal Science. 16, 37 – 40.
  • 31. Rosendaal, H. C. F., Colijn, P. F., & Scheaf, P. J. (1983). The developement of nitrogen concentration profiles of nitriding iron. Metal. Trans. 14, 395 – 399.
  • 32. Keddam, M., Djeghlal, M. E., & Barrallier, L. (2005). A simple diffusion model for the growth kinetics of A' iron nitride on the pure iron substrate. Appl. Surf. Sci. 242, 369 – 374. DOI: 10.1016/j.apcusc.2004.09.003.
  • 33. Keddam, M., Djeghlal, M. E., & Barrallier, L. (2004). A diffusion model for simulation of bilayer growth (A//') of nitrided pure iron. Mater. Sci. Eng. A. 378, 475-478. DOI: 10.1016/j.msea.2003.11.066.
  • 34. Grabke, H. J. (1968). Reaction of ammonia, nitrogen, and hydrogen on the surface of iron. II. Kinetics of iron nitridation with nitrogen and nitrogen desorption. Ber. Bunsenges. Phys. Chem. 4, 533 – 543.
  • 35. Grabke, H. J. (1973). Kinetics of nitriding iron as a function of the oxygen activity of the gas. Archiv. Eisenhut. 44, 603 – 608.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0054-0044
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.