PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improvement of enzyme stability via non-covalent complex formation with dextran against temperature and storage lifetime

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The optimal methodology to prepare the novel modified enzyme, polymer-enzyme complex, was developed to give a high catalytic activity in aqueous solution. The non-covalent complexes of two different enzymes (horseradish peroxidase and glucose oxidase) were prepared with various molar ratios (nD/nE 0,05; 0,1; 1; 5; 10; 15; 20) by using 75kDa dextran. The thermal stabilities of the obtained complexes were evaluated with the activities determined at different temperatures (25, 30, 35, 40, 50, 60, 70, 80°C) applying 60 minutes incubation time for pH 7. The complexes with the molar ratio nD/nHRP: 10 and nD/nGOD: 5 showed the highest thermal stability. Its activity was very high (ca. 1,5-fold higher activity than pure enzyme for HRP-dextran complexes) and almost the same between applying one hour incubation time and without incubation, and could also be measured at high temperatures (70, 80 °C). We finally succeeded in preparing dextran-enzyme complexes which showed higher activity than pure enzyme in aqueos solution at all temperatures for pH 7. In addition, the mentioned complexes at pH 7 had very long storage lifetime compared to purified enzyme at +4 °C; which is considered as a good feature for the usage in practice.
Rocznik
Strony
12--16
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
autor
  • Faculty of Arts and Sciences, Department of Chemistry, Yildiz Technical University, Davutpasa Campus 34210 Esenler, Istanbul/TURKEY, maltikatoglu@yahoo.com
Bibliografia
  • 1. Xing, F., Cheng, G., Yang, B. & Ma, L., (2004). Microencapsulation of capsaicin by complex coacervation of gelatine Acacia, and tannins. J Appl Polym Sci. 91, 2669 – 2675. DOI: 10.1002/app.13449.
  • 2. Xing, F., Cheng, G., Yang, B. & Ma, L., (2005). Nanoencapsulation of capsaicin by complex coacervation of gelatine, Acacia, and tannins. J Appl Polym Sci. 96, 2225 – 2229. DOI: 10.1002/app.21698
  • 3. Champagne, C.P. & Fustier, P., (2007). Microencapsulation for the improved delivery of bioactive compounds into foods. Curr Opin Biotechnol. 18:184-90. DOI: 10.1016/j.copbio.2007.03.001
  • 4. Turgeon, S.L., et al. (2007). Protein-polysaccharide complexes and coacervates. Current Opinion in Colloid & Interface Science 12, 166 – 178. DOI: 10.1016/j.cocis.2007.07.007.
  • 5. Daniel, S.K., (2007). Microparticles and nanoparticles for drug delivery. Biotechnol Bioeng. 96, 203 – 209. DOI: 10.1002/bit.21301.
  • 6. Dickinson, E., (2006). Colloid science of mixed ingredients. Soft Matter 2, 642 – 652. DOI: 10.1039/b605670a.
  • 7. Haug, I.J., Draget, K.I. & Smidsrod, O., (2004). Physical behaviour of fish gelatin-κ-carrageenan mixtures. Carbohydr Polym. 56, 11 – 19. DOI: 10.1016/j.carbpol.2003.10.014.
  • 8. Vikelouda, M. & Kiosseoglou, V., (2004). The use of carboxymethylcellulose to recover potato proteins and control their functional properties. Food Hydrocoll 18, 21 – 27. DOI: 10.1016/S0268-005X(03)00038-9.
  • 9. Damianou, K. & Kiosseoglou, V., (2006). Stability of emulsions containing a whey protein concentrate obtained from milk serum through carboxymethylcellulose complexation. Food Hydrocoll 20, 793 – 799. DOI:10.1016/j.foodhyd.2005.07.011.
  • 10. Montilla, A., Casal, E., Moreno, J., Belloque, J., Olano, A. & Corzo, N., (2007). Isolation of bovine ß-lactoglobulin from complexes with chitosan. Int Dairy J. 17, 459 – 464. DOI:10.1016/j.idairyj.2006.05.009.
  • 11. Turgeon, S.L., Beaulieu, M., Schmitt, C. & Sanchez, C., (2007). Protein-polysaccharide interactions: phase-ordering kinetics, thermodynamic and structural aspects. Current Opinion in Colloid & Interface Science 8, 401 – 414. DOI: 10.1016/S1359-0294(03)00093-1.
  • 12. Doublier, J.L., Garnier, C., Renard, D. & Sanchez, C., (2000). Protein-polysaccharide interactions. Curr Opin Colloid Interface Sci. 5, 202 – 214. DOI: 10.1016/S1359-0294(00)00054-6.
  • 13. de Kruif, C.G., Weinbreck, F., de Vries, R., (2004). Complex coacervation of proteins and anionic polysaccharides. Curr Opin Colloid Interface Sci. 9, 340 – 349. DOI: 10.1016/j.cocis.2004.09.006.
  • 14. Murakami, Y. & Hirata, A., (1999). Poly(Ethylene Glycol)-G-Chymotrypsin Complex Catalytically Active in Anhydrous Isooctane. Journal of Bioscience and Bioengineering 88, 441 – 443. DOI: 10.1016/S1389-1723(99)80224-2.
  • 15. Blinkovsky, A.M., Khmelnitsky, Y.L. & Dordick, J.S., (1994). Organosoluble enzyme-polymer complexes: A novel type of biocatalyst for non-aqueous media. Biotechnol. Tech. 8, 33 – 38. DOI: 10.1007/BF00207630.
  • 16. Otamiri, M., Adlercreutz, P. & Mattiasson, B., (1992). Complex formation between chymotrypsin and ethyl cellulose as a means to solubilize the enzyme in active form in toluene. Biocatalysis 6, 291 – 305. DOI: 10.3109/10242429209065249.
  • 17. Otamiri, M., Adlercreutz, P. & Mattiasson, B., (1994). Polymer-polymer organic solvent two-phase system: A new type of reaction medium for bioorganic synthesis. Biotechnol. Bioeng. 43, 987 – 994. DOI: 10.1002/bit.260431012.
  • 18. Murakami, Y., Hoshi, R. & Hirata, A., (2003). Characterization of polymer-enzyme complex as a novel biocatalyst for non-aqueous enzymology. Journal of Molecular Catalysis B: Enzymatic 22, 79 – 88. DOI: 10.1016/S1381-1177(03)00009-2.
  • 19. Crepon, B., Jozefonvicz, J., Chytry, V., Rihova, B. & Kopecek, J., (1991). Enzymatic degradation and immunogenic properties of derivatized dextrans. Biomaterials 12:550-4. DOI: 10.1016/0142-961(91)90049-G.
  • 20. Lee, K.Y. & Yuk, S.H., (2007). Polymeric protein delivery systems. Prog. Polym. Sci. 32, 669 – 697. DOI: 10.1016/j.progpolymsci.2007.04.001.
  • 21. Sinha, V.R. & Kumria, R., (2001). Polysaccharides in colon-specific drug delivery. International Journal of Pharmaceutics 224, 19 – 38. DOI: 10.1016/S0378-5173(01)00720-7.
  • 22. Sanz, V., de Marcos, S., Castillo, J.R. & Galbán, J., (2005). Application of Molecular Absorption Properties of Horseradish Peroxidase for Self-Indicating Enzymatic Interactions and Analytical Methods. J Am Chem Soc. 127,1038 – 1048. DOI: 10.1021/ja046830k.
  • 23. Veitch, N.C. & Nigel, C., (2004). Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65, 249 – 259. DOI: 10.1016/j.phytochem.2003.10.022.
  • 24. Wei, Y., Feng, X., Chen, X., Hou, W. & Zhu, J. J., (2008). A super highly sensitive glucose biosensor based on Au nanoparticles-AgCl@polyaniline hybrid material. Biosens. Bioelectron. 23, 925 – 931. DOI: 10.1016/j.bios.2007.09.002.
  • 25. Zhu, M., Jiang, Z. & Jing, W., (2005). Fabrication of polypyrrole-glucose oxidase biosensor based on multilayered interdigitated ultramicroelectrode array with containing trenches. Sens. Actuators. B: Chem. 110, 382 – 389. DOI: 10.1016/j.snb.2005.02.036.
  • 26. Topcu Sulak, M., Gokdogan, O., Gulce, A. & Gulce, H., (2006). Amperometric glucose biosensor based on golddeposited polyvinylferrocene film on Pt electrode. Biosens. Bioelectron. 21, 1719 – 1726. DOI: 10.1016/j.bios.2005.08.008.
  • 27. Iyer, P.V. & Ananthanarayan, L., (2008). Enzyme stability and stabilization-Aqueous and non-aqueous environment. Process Biochemistry, 43, 1019 – 1032. DOI: 10.1016/j.procbio.2008.06.004.
  • 28. de la Casa, R.M., Sanchez-Montero, J.M. & Sinisterra, J.V., (1998). Modification of hydrophilicity/hydrophobicity of the microenvironment of lipase of Candida rugosa by dextrans, Biotechnology Letters. 21, 123 – 128. DOI: 10.1023/A:1005426101080.
  • 29. de la Casa, R.M., Guisan, J.M., Sanchez-Montero, J.M. & Sinisterra, J.V., (2002). Modification of the activities of two different lipases from Candida rugosa with dextrans. Enzyme and Microbial Technology 30, 30 – 40. DOI: 10.1016/S0141-0229(01)00446-X.
  • 31. Tanaka, M., Morimoto, A., Ishimori, K. & Morishima, I., (1998). Structure-activity relation of horseradish peroxidases as studied with mutations at heme distal and proximal sites. Pure and Appl Chem. 70, 911 – 916.
  • 32. Altikatoglu, M., Arioz, C., Basaran, Y. & Kuzu, H.,
  • (2009). Stabilization of Horseradish Peroxidase by Covalent Conjugation with Dextran Aldehyde Against Temperature and ph Changes. Central Euorpean Journal of Chemistry. 7:3, 423 – 428. DOI: 10.2478/s11532-009-0041-z.
  • 33. Jakopitsch, C., Regelsberger, G., Furtmüller, P.G., Rüker F., Peschek, G.A. & Obinger, C., (2002). Engineering the proximal heme cavity of catalase-peroxidase. Journal of Inorganic Biochemistry 91, 78 – 86. DOI:10.1016/S0162-0134(02)00374-4.
  • 34. Dilgimen, A. S., Mustafaeva, Z., Demchenco, M., Kaneko, T., Osada, Y. & Mustafaev, M,. (2001) Water-soluble covalent conjugates of bovine serum albumin with anionic poly(N-isopropyl-acrylamide) and their immunogenicity. Biomaterials 22, 2383 – 2392. DOI: 10.1016/S01142-9612(00)00425-7.
  • 35. Mislovicova, D., Masarova, J., Bucko, M. & Gemeiner, P., (2006). Stability of penicillin G acylase modified with various polysaccharides. Enzyme and Microb. Technol. 39, 579 – 585. DOI: 10.1016/j.enzmictec.2005.11.012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0054-0039
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.