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ABSTRACT  Exact analytical formulae suitable to integrate the 
boundary quantity over a rectangular boundary element are given. 
They can be used in algorithms of the boundary-integral technique 
when some field quantity at the vicinity of the boundaries is searched 
for. The special computer test software was accomplished which 
enabled to compare the approximate integrations by Gauss quadrature 
to those ones obtained by the exact formulae. The error of the 
numerical approach increases significantly when a distance of field 
points from the boundary element becomes comparable with the size 
of it. For the larger distance, both kind of integration are equivalent. 
The above statement seems to be important when the boundary-
integral technique should be applied to compute the magnetic field 
within the air gap of electric machines. 
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1. INTRODUCTION 
 
 A concept of the paper corresponds to the general idea pertaining to 
engineering design to exploit analytical integrals, if they exist in relevant case, 
instead of apply approximate numerical calculations. Nowadays, the advanced 
mathematical procedures are used in order to solve problems of electric and 
magnetic fields in electrical devices. Such measures are formed into compact 
set of algorithms and arranged as special computer software. Boundary-integral 
approach or its practical accomplishment: the boundary element method (BEM), 
are largely known and widely applied, see for instance Kost [7], Krajewski [8], 
Sikora [11]. Operations of integration form the issue part of mathematical 
algorithms of this approach. Generally, approximate integrals are used in the 
algorithms, but it involves some kind of numerical inconveniences. The special 
procedures were searched for performing effective integration, e.g. the symbolic 
computation see Almeida & Pina [1], but it has not resolved the crucial 
difficulties of the problem, mainly related to non-singular and quasi-singular 
integrals.  

We would like to present our consideration on the integral problems in 
relation to the indirect variant of the boundary-integral approach that is based 
on a concept of the fictitious single layer boundary quantity σ  of surface density 
feature. Generally, this quantity is supposed to be appeared upon same part Γ1 
of the total boundaries Γ. This quantity involves the potential ϕ  for which the 
basic equation holds: 

 
Pϕ σ

Γ

= ∫
1

( ) G(Q,P) dQ                                                                    (1) 

 

where the kernel 1
4

=
π QP

G(Q,P)
R

 is Green function in 3-D, and RQP is vector1) 

directed from the source point Q on Γ1 to field point P. In a region where the 
potential exists, the vector field quantity (of field-strength character) can be 
considered, for which the following equation with relevant kernel is valid: 
 

34
1

QP

QP

grad dQ
Γ

⋅
= − = ∫

σ
ϕ

R
V

Rp
                                                      (2) 

 
 The boundary-integral approach and, in particular, the BEM represent in 
fact a consistent set of algorithms to deal with a set of simple boundary 
                                                      
1) RQP is defined by vector difference between the position vectors of point P and Q. 
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elements, preferably of rectangular shape, on which the above boundary 
quantity σ  is attributed. The boundaries are practically formed as an interface 
between two pieces of various physical characteristics, for instance between an 
air and ferromagnetic core. An appropriate subdivision of the boundary to obtain 
a finite number of boundary elements determines a rang of matrix to be solved. 
Generally, the more the boundary elements are chosen, the higher accuracy of 
a computed field quantity is expected, however, on the other hand, the matrix 
rank cannot be excessively extended. The error of computed field quantity is 
increased at the field points situated in the vicinity of the boundaries and this 
problem was thoroughly examined, see for instance Igarashi & Honma [6]  
in relation to the magnetic field. For this reason, the boundary-integral technique 
seems to be hardly appropriate to compute the field within small-size air gaps, 
for instance in the air gap of electric machines. An example related to an idea 
how that problem might be treated was presented in past by Bill and co-authors [4].  
 It will be shown in the paper that the difficulties related to computing the 
magnetic field near to boundary elements and on the boundary elements itself 
can be effectively limited when some numerical integrations going on the typical 
boundary-integral algorithms are replaced by the exact formulae. 
 
 
 
2. INTEGRALS OVER THE BOUNDARY ELEMENT 
 
 Integrations over the 
boundary elements are  
a key problem of the 
boundary-integral algo-
rithms. They must be twice 
applied: firstly, when the 
matrix elements has to be 
calculated, and secondly, 
after a solving the main 
matrix equation, in order 
to compute the distribution 
of the field quantity that is 
just searched for. 
 Let us evaluate the 
problem of computation error when the field point approaches significantly  
to the boundary element. Consider the rectangle boundary element shown  
in figure 1. 

 
Fig. 1. Rectangular boundary element 

P(x,y,z) 

Q(ξ,η,0) 
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 To refer to an engineering object, suppose, not losing generality of the 
consideration, that the element shown in figure 1 is situated on a pole surface of a 
permanent magnet. Consider the magnetic flux density in the neighborhood of 
the magnet pole. Let the boundary quantity σm, that we term surface density of 
magnetic charge, see [9], and that is defined as equal to magnitude of the 
magnetic polarization inside the magnet, be constant over the element. Thus, at 
the field point P(x, y, z) situated outside the boundary, the magnetic scalar 
potential involved by σm fulfils the equation: 
 

2

b a

b a

x y z
x y z

σψ ξ η
μ ξ η− −

=
⎡ ⎤− + − +⎣ ⎦

∫ ∫m
m 12 2 2

1
d d

4
( , , )

( ) ( )0p
            (3) 

 
where the denominator of the integrand is formed by the magnitude QPR of the 

vector QPR . The magnetic flux density B at P(x, y, z) being generally defined by 
μ0 times minus gradient of ψm is expressed by the formula: 
 

b a

b a

x y zx y z
x y z

σ ξ η ξ η
ξ η− −

− + − +
=

⎡ ⎤− + − +⎣ ⎦
∫ ∫m

3 22 2 2
d d

4
( ) ( )( , , )

( ) ( )

i j kB
p

                      (4) 

 
where i, j, k are base vectors attributed to the local Cartesian coordinates of the 
boundary element.  
 
 In a professional BEM software, integrals of type (3) and (4) are mainly 
calculated numerically, in practice the Gauss quadrature formula is employed. 
The integrants of both expressions are function of two variables ξ, η for which 
the following abscissas are chosen ;i i j ja U y bUξ = = , where i jU Uand  are 

roots of the Legendre polynomial of the N + 1 degree to which the weights Wi 
and Wj. correspond. Thus, integrals (3) and (4) can be approached to the 
double sums:  
 

N N

i j
i j i j

abx y z W W
x y z

σψ
μ ξ η

+ +

= =
= ⋅ ⋅

− + − +
∑ ∑

1 1
m

m 1 22 2 21 1

1( , , )
4 ( ) ( )0p

    (5) 

 
N N

i j
i j

i j i j

x y zabx y z W W
x y z

ξ ησ

ξ η

+ +

= =

− + − +
= ⋅ ⋅

⎡ ⎤− + − +⎣ ⎦
∑ ∑

1 1
m

3 22 2 21 1

( ) ( )
( , , )

4 ( ) ( )

i j k
B

p
    (6) 
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 We intend to show that it is useful, for the rectangular boundary element, 
to employ the exact integral formulae of (3) and (4) instead of (5) and (6).  
 
 
 
3. MAGNETIC FLUX DENSITY 
 
Basic solution 

 Let us start up the consideration from formula (4) because the exact 
solution in this case is relatively simpler than that one of formula (3). Following 
the Ryshik and Gradstein tables [10], we have shown in [9] that the exact 
solution of double integral (4) can be reached explicite2).The following formulae 
for the particular coordinates of B hold: 
 

( )xB x y z w w w wσ
= − − +m

1 2 3 4ln ln ln ln
8

( , , )
p

                          (7) 

( )yB x y z v v v vσ
= − − +m

1 2 3 4ln ln ln ln
8

( , , )
p

                             (8) 

( )zB x y z u u u uσ
= − − +m

1 2 3 4arctan arctan arctan arctan
4

( , , )
p

           (9) 

 
where the arguments w, v, u being functions as well of size a and b of the 
rectangle boundary element as of coordinates x, y, z of point P are given below:  
 

y b x a y b z
w

y b x a y b z

+ ± + + + +
=

+ ± − + + +

2 2 2

1,2 2 2 2

( ) ( ) ( )

( ) ( ) ( )
 ;    

2 2 2

3,4 2 2 2

( ) ( ) ( )

( ) ( ) ( )

y b x a y b z
w

y b x a y b z

− ± + + − +
=

− ± − + − +
 

2 2 2

1,2 2 2 2

( ) ( ) ( )

( ) ( ) ( )

x a x a y b z
v

x a x a y b z

+ ± + + + +
=

+ ± + + − +
 ;      

2 2 2

3,4 2 2 2

( ) ( ) ( )

( ) ( ) ( )

x a x a y b z
v

x a x a y b z

− ± − + + +
=

− ± − + − +
 

      1,2 3,42 2 2 2 2 2

( )( ) ( )( );
( ) ( ) ( ) ( )

x a y b x a y bu u
z x a y b z z x a y b z

+ ± − ±
= =

+ + ± + − + ± +
 

 For a compact form of formulae (7)-(9) see Amendment. 
                                                      
2) Two exact solutions of indefinite integrals No. 2.264.5 and 2.284 given in [10] were applied,  

 consecutively, with the integral limits as well. 
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Singular integral at the centre of element 

We would like to present the following procedure to determine Bz at the 
centre of the rectangular boundary element carrying σm = const. When point P 
tends to any point localized upon the boundary element the kernel of integral (4) 
tends to infinity and the integral becomes singular. To determine its value for 
P(0, 0, 0), the following treatment is proposed. Let us rewrite the above 
arguments related to P(0, 0, ε). Substituting x = 0 and y = 0 we have all 
arguments w and v equal to 1 for any ε. The above results in disappearing of all 
natural logarithms, thus equations (7) and (8) give correctly zero for the 
components Bx and By.  

The following procedure leads to determine the component Bz: The 
arguments u for the point P(0; 0; ε) are: 

 

41 2 3 12 2 2 2 2 2
;ab abu u u u u

a b a b

−
= = = = = −

+ + + +ε ε ε ε
 

 
and equation (9) can be simplified to read: 
 

( )z
uB u u
u

σ σε
⎛ ⎞

= − − = +⎜ ⎟
−⎝ ⎠

m m 1
1 1 2

1
2 arctan arctan 2 arctan

2
0,0

4 4 1
( , ) ( ) p

p p
.    (9a) 

 
where the formula of a difference between two inverse tangents for the 
respective arguments u >1 1  and  u− < −1 1 was applied. 

For 0→ε  the argument 1u → ∞  thus 
u

u
u→∞

=
−1

1
2
1

lim arctan
2

0
1

, hence 

the singular value of the magnetic flux density at the centre of boundary 
element is as follows: 

zB σ
= = m0,0,0

2
( )B k k                                                            (9b) 

 
being dependent neither on a nor on b. 
 
Test calculations 

 A special test software3) was developed with intention to compare the 
results of approximate integration by Gauss quadrature (6) to those ones  
                                                      
3) Program BEM_B. 
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of exact formulae (7)-(9). All computed results that are presented by the 
following figures are related to the boundary element 2a x 2b = 10 mm x 10 mm 
and to the boundary quantity σm = 1 T supposing to be uniformly distributed 
upon the surface of the boundary element. The magnetic flux density due to σm 
is computed lengthways the field-point segment P1 – P2 that can be traced 
anywhere, outside the boundary surface. 

The computed results shown in figure 2 concern the segment coinciding 
with z-axis, hence, only the Bz components exist. The exact integration was 
performed accordingly to formulae (7)-(9) and similarly the numerical 
integration, i.e. the double Gauss quadrature corresponding to Legendre 
polynomial of degree N + 1 = 4 was applied (i.e. 16 abscissas upon the element 
are considered). One can observe that the discrepancy between two curves has 
a significant value at distance of 0,5 mm from the boundary. It decreases at 
longer distances and disappears, almost entirely, at distance about 3,5 mm. 
Over this value both curves coincide. The test calculation for N + 1 = 6  
(36 abscissas) does not give a sufficient improvement on the matter. Curve 1 
representing the exact integration tends evidently to the singular value of Bz 
which, in conformity with (9b) and for σm = 1 T, is equal to m 2 0,50 T=σ .  
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Fig. 2. Magnetic flux density lengthways the segment P1(0,0; 0,0; 0,5) – 
P2(0,0; 0,0; 5,0) 

1 – Exact integration, 2 – Numerical integration (double Gauss quadrature formula) 
 

1 
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The curves shown in figure 3 are related to the segment of the field 
points laying on the line perpendicular to the boundary element, and crossing  
it at point P1(2,5; 2,5; 0,0) i.e. at ¼ of the diagonal of the element. The 
computed field represents a magnitude of vector B = B  having in this case all 

three non-zero components that were calculated, separately. The discrepancy 
between the curves calculated by the exact formulae and by the numerical ones 
is also observed; it disappears about the similar distance as in the case of figure 2, 
however, the numerical calculation results in this case in higher values that the 
corresponding exact results, inversely than in previous case. 

 
The curves in figure 4 differ from those of two previous figures on the 

field-points segment position that coincides with the line crossing the boundary 
element just at its corner. We observe that the numerical and exact calculations 
differ slightly each other and this small discrepancy disappears at 2,5 mm from 
the element surface. The similar calculation performed for the line with pole-
points segment crossing the element surface outside the element itself shown 
the results of the numerical calculation that coincide, even in the vicinity of this 
surface, with the results of exact calculation. 

 
The results of the exact and numerical integrations pertaining to the 

component Bx at points situated lengthways the segment P1 – P2 parallel to x  
axis and 1,0 mm distant from the boundary element surface, and traced from 
x = 0 till to x = 2a is shown in figure 5. The values calculated by exact 
integration (curve 1) mark the function Bx(x) being quite linear over the element 
but hyperbolic outside of it. The results of the numerical integration (curve 2) 
show irregular distributions over the element but out of the element it becomes 
like curve 1, exactly. Such irregularity is increased for similar P1 – P2 segments 
situated nearly the element, and disappears for segments at distance over 3,0 
mm from the element. 

 
The dependence of the shape of curve Bz( z) upon the size of the 

boundary element, for z taking values from z = 0,0 mm till to z = 5,0 mm is 
illustrated in figure 6. The value Bz(0), see formula (9b) for its singular value, is 
independent on size of the rectangular element and (for σm = 1 T ) it is equal to 
0,5 T for each of the considered boundary element . For z > 0, a shape of the 
curves is affected by the element size. The minor is the element, the substantial 
is deflection of the curves from their initial values. 
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Fig. 3. Magnetic flux density lengthways the segment P1(2,5; 2,5; 
0,5) – P2(2,5; 2,5; 5,0) 
1 – Exact integration, 2 – Numerical integration (double Gauss quadrature 
formula) 
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Fig. 4. Magnetic flux density lengthways the segment P1(5,0; 5,0; 
0,5) – P2(5,0; 5,0; 5,0) 
1 – Exact integration, 2 – Numerical integration (double Gauss quadrature 
formula) 
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Fig. 5. Component Bx of magnetic flux density lengthways the segment 
P1(0,0; 0,0; 1,0) – P2(10,0; 0,0; 1,0)  

1 – Exact integration, 2 – Numerical integration (double Gauss formula) 
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Fig. 6. Magnetic flux density lengthways the segment P1(0,0; 0,0; 0,0) – 
P2(0,0; 0,0; 5,0) of various boundary elements: 1) 10 mm x 10 mm,  
2) 8 mm x 8 mm, 3) 4 mm x 4 mm 
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4. MAGNETIC SCALAR POTENTIAL 
 
Basic solution 

 The formula of the scalar magnetic potential (3) can be easy integrated 
only with respect to one source variable. The integration with respect to η 
gives4) the following two-term formula: 

 

( ) ( )

b

b

x a x ax y z
y z y z

σψ η
μ η η

− −

−

⎡ ⎤
+ −⎢ ⎥= −⎢ ⎥

− + − +⎢ ⎥⎣ ⎦
∫ 1 1m

m 2 22 2
( , , ) sh sh d

4 0p
        (11) 

 
Taking regard that the inverse hyperbolic sine is joint with the natural logarithm 
by the obvious equation: 
 

( )u u u− = + +1 2sh ln 1                                                                (12) 

 
the compact formula of (11) can be equivalently read as follows: 
 

a

a

y b x y b z
x y z

y b x y b z

ξσψ ξ
μ ξ−

⎡ ⎤+ + − + + +⎢ ⎥=
⎢ ⎥− + − + − +⎣ ⎦

∫
2 2 2

m
m 2 2 2

( ) ( )
( , , ) ln d

4 ( ) ( )0p
      (11a) 

 
but both (11) and (11a) rise problems of their further (with respect to ξ) exact 
integration. Azis [2] has quoted some exact solution of the indefinite integral 
appearing in (11) and Craik [5] recalls it by a simple notice, only. In order to 
examine the Azis’ proposal we rewrite it in developed form with the integral 
limits to get the formula 
 

( )x y z σψ λ λ λ λ
μ

= + + +(1) (2) (3) (4)m
m m m m m( , , )

4 0p
                                   (13) 

 
which is composed with four terms, each having three sub-terms that we give 
below:  
 
                                                      
4) See [10], integral No 2.261. 
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x ay b
y b

y b x a y bx a
x a x a y b

z

z
z z z

λ −

−

±
= ± +

+ +

+ ± +
± ±

± + ± + + +
∓

(1,2) 1
m 2 2

1
2 2 2 2 2

( )sh
( )

( )( )( )sh arctan
( ) ( ) ( )

 

 
x ay b

y b
y b x a y bx a

x a x a y b

z

z
z z z

λ −

−

±
= −

− +

− ± −
± ±

± + ± + − +

∓

∓

(3,4) 1
m 2 2

1
2 2 2 2 2

( )sh
( )

( )( )( )sh arctan
( ) ( ) ( )

 

 
 
When the particular terms of the above are suitably assembled and 

arranged and yet equation (12) is applied to them, the friendly form composed 
with five terms Λm can be got: 
 

( )4
(1) (2) (3) (4) (5)m

m m m m m m( , , )x y z = + + + +
σψ Λ Λ Λ Λ Λ

μ0p
                         (14) 

 
where the particular terms are expressed below: 
 

x a x a y b
y b

x a x a y b

z
z

Λ
+ + + + ± +

= ±
− + − + ± +

2 2 2
(1,2)
m 2 2 2

( ) ( )
( ) ln

( ) ( )
 

 
y b x a y b

x a
y b x a y b

z
z

Λ
+ + ± + + +

= ± ±
− + ± + − +

2 2 2
(3,4)
m 2 2 2

( ) ( )
( ) ln

( ) ( )
 

 
[ ](5)

m 1 2 3 4arctan arctan arctan arctanu u u uz= − − − +Λ  

 
where the arguments u are identical as in formula (9). For the compact form of 

(5)
mΛ  see Amendment. 

 
 
Singular integral at the center of element 

 The integral (3) expressing the magnetic scalar potential at points P 
localized upon the boundary element is singular. Let us examine the problem 
for the point P(0, 0, ε) tending to the centre of the element. Notice, referring to 
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the exact solution of ψm given by formula (14), that the first four terms exist at 
P(0,0,0) and they are, after substituting x = 0, y = 0 and 0→ε , to read: 
 

0 0
(1) (2)
m m

2 2

2 2
2 ln

a b ab
a b a

Λ Λ
+ +

+ =
+ −

 ; 0 0
(3) (4)
m m

2 2

2 2
2 ln

a b ba
a b b

Λ Λ
+ +

+ =
+ −

       (15) 

 
 

To determine the last term 0
(5)
mΛ  at this point, note that the above 

substitution leads to: 
 

(5)
m 2 2 2 2 2 2

0,0 2 arctan arctan( , ) ab ab

a b a b
Λ ε ε

ε ε ε ε

⎡ ⎤−
= −⎢ ⎥

⎢ ⎥+ + + +⎣ ⎦
 

 
and we have, applying the formula for a difference of two inverse tangent 
functions that was used in previews chapter, that 0

(5)
mΛ =

0
lim 2

ε
ε

→
0π = , hence, 

the sum of the only four members (15) determines the magnetic scalar potential 
at the center of the rectangular boundary element with uniformly distributed σm 
to read: 
 

( )0 0 0 0
σψ Λ Λ Λ Λ

μ
= + + +(1) (2) (3) (4)m

m m m m m0,0,0
4

( )
0p

                  (14a) 

 
Test calculations 

 The author has accomplished a specialize test software5) in order to 
examine the above solutions. The results of the performed computation are 
presented in figure 7. The field-point segment is chosen on z-axis similarly as it 
was done for calculated results of Bz presented in figure 2. Curve 1 gives the 
result of exact solution – formula (13) , curve 2 represents the results obtained 
by applying the single Gauss quadrature formula to equation (10), in relation to 
the variable ξ ; curve 3 gives results of full-numerical integration by the double 
Greens formula with respect to both source variables, equation (5). The 
discrepancies between the curves are observed at distance till to 2 mm from the 
boundary element, and moreover, they are relatively smaller than we have 
observed for the magnetic flux density, compare figure 2. Generally, a correctness 
attainted by the exact formula seems be principally better. Curve 1 is quite 

                                                      
5) Program BEM_PSI 
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monotonic that corresponds to physical character of the potential. It is not the 
case of curves 2 or 3. For 0z → , curve 1 tends to value 0,223 kA that results 
from formula (14a) related to the singular solution of equation (3). It is not the 
case for the approximate solutions. 

The practical correctness of values of ψm computed by the exact formula 
can be verified by comparison the magnetic flux density Bz calculated by exact 
formula (9) with its value expressed by –μ0 gradz ψm. Consider for instance the 
value of Bz at point P(0,0; 0,0; 1,5) at z-axis. It is equal to 0,370 T, see Fig. 2. If 
we approximate the gradz ψm by its final difference of two values of ψm given in 
figure 7 that correspond to points P(0,0; 0,0; 1,0) and P(0,0; 0,0; 2,0) we get: 
 

0 0zB ψ ψμ μ− −
= − = − =m m(0,0; 0,0; 1,0) (0,0; 0,0; 2,0) 1,576 1,87 0,369 T

2,0-1,0 1,0
 

 
that verifies the coincidence of the both exact formulae: of the magnetic flux 
density (9) and the scalar magnetic potential (13)6). A small difference of the last 
digits is result of fact that formula (9) giving the value of 0,370 T is obtained by 
exact differentiation the ψm with respect to z, but the value of 0,369 T is 
calculated by final difference procedure, thus by an approximate calculation. 
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Fig. 7. Magnetic scalar potential lengthways segment P1(0,0; 0,0; 
0,5) – P2(0,0; 0,0, 5,0) 
1 – Exact integration, 2 – Half-numerical integration (single Gauss 
quadrature formula), 3 – Full numerical integration (double Gauss quadrature 
formula) 

                                                      
6) For all calculations referred in the paper, the following units, coherent each other, are applied:  

 for length mm, for magnetic flux density T, for scalar magnetic potential kA, and for magnetic 
 constant μ 0 = 0,4 π  kH/mm. 
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Figure 8 shows the results of computation the magnetic scalar potential 
ψm lengthways the segment P1 – P2 traced paralleling to x-axis and 1 mm 
distant from the surface of element (the computed component Bx corresponding 
to this segment is shown in figure 6). Over the boundary element, the particular 
curves 1, 2 and 3 differ each other but not so far as curves of Bx corresponding 
to them, however, curve 1 representing the exact integration is monotonic and it 
has the most regular shape. In the region outside the element all three curves 
have almost hyperbolic shape and they become identical. 

Similarly, as we have shown that in the case of component Bz the 
correctness of Bx can be testified. Let us observe that formula (7) gives  

1,153 TxB =  at P(3,0; 0,0;1,0) . On the other hand we get from formula (13) 
that m 1,799 kA=ψ  at P(2,0; 0,0;1,0)  and m 1,552 kA=ψ  at 4P( ,0; 0,0;1,0) , 
thus, applying the final difference of ψm with respect to x, we obtain 

xB =(3,0; 0,0;1,0) 1,155 T . It verifies accuracy of both exact formulae, at least 
till to the third digit; a difference of the fourth digits is due to small inaccuracy  
of final difference if compared with the exact differentiation with respect to x. 
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Fig. 8. Magnetic scalar potential lengthways segment P1(0,0; 0,0; 1,0) 
– P2(10,0; 0,0, 1,0) 
1 – Exact integration, 2 – Half-numerical integration (single Gauss 
quadrature formula), 3 – Full numerical integration (double Gauss quadrature 
formula 

 
 
5. CONCLUSIONS 
 
 The exact analytical solutions of the surface integrals over a rectangle 
boundary element that are preferred for the boundary-integral algorithms are 

3 
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presented in the paper. The particular solutions pertaining to the magnetic field 
due to permanent magnet were presented in sense of an example of the 
potential field treated by such approach. The results of exact integration were 
compared with that ones obtained by approximate numerical integration.  

It is proved that in the vicinity of the boundary element the approximate 
integrals leads to evident inaccuracy. As well the scalar quantities of potential 
type as the vector quantities determined by their gradients are concerned. The 
above statements pertains, generally, to a region that is distanced from  
a boundary element less than a size of the element itself.  

The exact integral formulae presented in the paper were effectively 
applied in a special software intended for computing the magnetic flux 
distribution within an air gap of an electric generator with permanent magnet 
field system.  

The main suggestions issued from the main consideration presented in 
the paper are the following. When the algorithms based on the boundary-
integral technique should be accomplished the kind of integration technique 
applied in them should be well thought-out. Although the boundary-integral 
algorithm operates with the boundary elements of rectangular shape and, 
moreover, the constant-value boundary quantity is supposed to be distributed 
upon the element then the exact analytical solutions of the integral over the 
boundary elements could be introduced into the algorithms. The analytical 
solutions given in the paper take practically exact results that are independent 
on the distance of the field points from the boundary elements. Moreover, when 
the field points are localized on the boundary itself and the relevant integrals 
becomes singular the exact integral formulae, when submitted to a limit 
procedure, lead to analytical solutions of the singular integrals, too. The use of 
the exact analytical integrals is not necessary for the field point localized  
at distance from the boundary element larger than the size of the element, 
where the numerical integrals may be applied as well. 
 
 
Amendment 

In computer software equations (7) and (8) should be coded in compact 
form: 

x
w wB x y z
w w

σ
= 1 4

2 3

m ln
8

( , , )
p

                                                          (7c) 

 

y
v vB x y z
v v

σ
= 1 4

2 3

m ln
8

( , , )
p

                                                            (8c) 
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 Equation (9) can be also compactly coded, however, some conditions 
related to the values of the arguments u shall be checked up, thus 
 

z + u u
u u u uB x y z k l

u u
σ

+

⎡ ⎤⎛ ⎞⎛ ⎞− −
= + − +⎢ ⎥⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦1 2 3

m 1 2 3 4

4
arctan arctan

1 14
( , , ) p p

p
            (9c) 

 
where the parameter k obeys the following conditions:  

• if u u > −1 2 1 then k = 0 ,  
• if u u < −1 2 1 and u >1 0  then k = 1, 
• if u u < −1 2 1 and u <1 0  then k = −1. 

 
The similar conditions concern the parameter l in dependence on u3 and 4u . 

The formula of the 3-rd term of magnetic scalar potential 3( )
mλ  appearing in 

equation (14) can be identically transformed into the compact form to read: 
 

+ u u
u u u uz k l

u u
Λ

+

⎡ ⎤⎛ ⎞⎛ ⎞− −
= − ⋅ + − +⎢ ⎥⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦1 2 3

(5) 1 2 3 4
m

4
arctan arctan

1 1
p p  

 
 with the conditions for k and l quite identical as in equation (9c). 
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ANALITYCZNE WZORY CAŁKOWE DO STOSOWANIA 
W OBLICZENIACH WIELKOŚCI POLOWYCH 

TECHNIKĄ CAŁEK BRZEGOWYCH 
 
 

K. PAWLUK 
 
STRESZCZENIE  Podano dokładne wzory do całkowania 
wielkości brzegowej po prostokątnym elemencie brzegowym. Mogą 
one znaleźć zastosowanie w algorytmach technik całkowo-
brzegowych, gdy obliczenie dotyczy wielkości polowych w pobliżu 
samego elementu brzegowego. Specjalnie przygotowane testowe 
programy komputerowe umożliwiły przeprowadzenie porównań wy-
ników obliczeń całkowania przeprowadzonego numerycznie kwadra-
turą Gaussa z całkowaniem za pomocą podanych wzorów ana-
litycznych. Błąd obliczenia numerycznego wzrasta znacząco dla 
punktów polowych, gdy ich odległość od elementu brzegowego staje
się współmierna z rozmiarem samego elementu. Dla większych od-
ległości obydwa rodzaje całkowania są równoważne. Powyższe 
stwierdzenie jest szczególnie istotne, gdy technika całkowo-brzegowa 
ma być zastosowana do obliczania pola magnetycznego w szczelinie 
powietrznej maszyny elektrycznej. 
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