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ANALYSIS OF THREE-DIMENSIONAL
MAGNETIC FIELD IN THE INTERIOR
OF RING SHAPED SECTOR

ABSTRACT The subject of the paper is analytical solution
of common boundary value problem for Laplace equation in the
interior of sector of torus with rectangular cross-section using Fourier
method of separation of variables.
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1. PROBLEM DEFINITION

Fourier variable separation method is one of the basic analytical method
of solution of mathematical physics boundary problem in linear medium [2].
In terms of it the accurate development (in formula form) can be derived.
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In electromechanics problems the cross-section of electrical machine’s active
zone usually can be divided into three-dimensional elementary regions shaped
as torus ring sectors with rectangular cross-sections (Fig. 1). Elementary
regions will be considered to be irreducible discrete geometric forms within the
bounds of which the medium is homogeneous (magnetic permeability within the
bounds of elementary region is invariable and can variate discontinuously only
on the bounds of the region).

If the Dirichlet's problem’s solution for the elementary region is obtained the
magnetizing force components (normal and tangential) on its bounds can be
determined. Then the Dirichlet's problem for the electrical machine’s active zone
can be solved using magnetic field’s boundary conditions for the aggregate
amount of elementary regions [1].

Fig. 1. Three-dimensional elementary region

2. THE SOLUTION OF LAPLACE'S EQUATION
FOR THE SECTOR OF TORUS RING

The general solution of Laplace’s equation for the sector of torus ring as on
Figure 1 can be written as

U(r,p,2)=U,(r,0,2) +U,(r,¢,2) +Uy(r, ¢, 2), (1)
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where U(r,p,z) (j = 1, 2, 3) are partial solutions which equal specified values

on opposite boundary surfaces and equal zero on the other four boundaries:
U,(rp.2)| _, = fi(re)U,(r.e,2) = f,(r.9). (2)
U(rp2),_, =0, Ui(re,2)| =0 U.(r,2) =0 U (rez) _ =0;
U,(r.e.2)| _ =9,(0.2);U,(r,0.2)| , =9,(0.2); (3)
U, (rp.2),, =0;U,(r,p,2)],, =0; U,(re2)| _,=0;U,(rez2)| _, =0;
U,(r, e, z)|(/):0 =h,(r,z); U,(r, o, z)|¢:a =h,(r,2). (4)

Us(rp.2)|_, =0;Uy(rp,2) , =0;Us(r,0,2)]_ =0;Uy(r,0,2) _ =0.

To solve the first problem the partial solutions of Laplace’s equation must be
found. It can be represented as:

U,(r.,2) = 8(r,p)Z(z) ()

(it is significant that the variable that was separated is that one on the
boundaries of which heterogeneous (non-zero) boundary conditions are
specified).

Substituting (5) into three-dimensional Laplace’s equation

o°u lou 1 o4
AU=—F+——+——
or ror r°op

2
+Zz—‘j=o (6)

and separating the variables, we will get:

A 7 _
dr.p)  Z(2)

—A, (7)

where

2 2
AZLQ—Q_FE@_’_%G 8

= 8
or* ror r?op? (8)
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Expression (8) is two-dimensional Laplacian for two variables (r,¢).

From (7) it is resulted that

A,3+149=0, a<r<b,O<gp<a,
l91|r:a = l91|r:b - '91|(p:0 219l|(p:a :0’ 19([',@) #0

and
2"(z)-1Z2(z)=0, 0<z<I
Expression (9) is the Sturm-Liouville problem for the ring sector.
Representing the solution of this problem as

=R (e),

after substituting (11) into (9) and separating the variables we will get:

2pn ' "
rrR+rR o
S Art=——=yp.

(9)

(10)

Two common differential equations with zero boundary conditions follow from

(12):

r’R"+rR'+(Ar* —v)R=0, a<r<b, }
R(r)|r:a :0’ R(r)|r:b :O’

O"+od=0, 0<p<a,
o(p)| , =0; ()| _, =0.

For the solution (14) it is valid that:
D(p) = D, (¢) =5in4v,0,

where

(13)

(14)
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Bessel differential equation (13) has the solution
R\(N=CJ - (WAN+C,N (VA ), (16)

where J (x), N, (xX) — Bessel functions of the first and the second kind
correspondingly, constants C, and C, can be found using zero boundary
conditions (13)

ClJM(\/IaHCZNM(\/Za):O, (17)

ClJﬂ(\/TbHCZNM(\/Zb):O. (18)

The non-zero solution of combined equations (17), (18) with unknown C, and
C, is possible if its determinant is zero

1o WAaN - (Ab)=N (N2 a)J -(ib)=0. (19)

In this equation (it is called dispersing [2]) the characteristic constants
A=2,k=123,.. can be determined which are the k-th roots of equation (19)

on every fixed n=1,2,3,....

From the first eqation (17) we have

J (AP a)

C,=-C,————. (20)
N - (A )
Choosing
C=N (A a), (21)

(becouse of degeneracy of combined equations (17), (18) one of the constants
can be determined arbitrarily) we will get from (20)

c, =—JM(W a). (22)
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After substituting (21) and (22) into (16) we will get

Ry (N =3 . (AN - (JAV2)-N  (J2nJ - (J2Pa).  (23)

Considering (19) for the solution (16) it is also valid

Rnk( )_ \/7

(A
\/ATZ) [f(\/ﬂT)Nr(\/in) N (TN W) .

It is convenient to represent the common solution of equation (10)
considering equality =A% as

sh /A% z sh /A% (1 -2)
Z(2)=2,(2) = Ank -+ Bu =, (25)
A1 sh/A%1

where A, B, — constants.

Thus partial solutions of Laplace’s equation for the first standard problem
take the form

Unk (r,(o, Z) = Rnk (r)q)n(¢)znk (Z) . (26)

Substituting (14), (23) and (25) into (26) and adding up partial solutions we
can find the common solution of the first standard problem:

U,(r,p,2)= ZZ[J\/*(\/ZTI’)N (\/iTa) N (Wr)*

n=1 k=1

A9z sh /A% (I—z)
*J (YA Il +B, : (27)
fin A”k ha01 ™ shyfa®)
from which follows
U,(r,p,2)|,_, = fi(r,p) = ZZRnK(r)Bnk sin "= co (28)

n=l k=1
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T

U(r.0.2),, = 1.(r.0) = X X Ry (A sin . (29)

n=1 k=1

Expressions (28), (29) are the two-fold Fourier series with coefficients

Ank ’ Bnk

B =mﬁ[f1(r,¢)&k (r)singqy]rérago, (30)
A, :m”[fz(r,(p)&k(r)sin?gp]rara(p, (31)

where

||Rnk(r)||2=jR§k(r)rdr —the norm R (r) squared. According to [2] we have

1 J\%(,/z;“a)—sz(,//ﬂnk)b)

2 2
IRy (1) :?%k) J%(Wb) (32)

The solution of the second standard problem is represented in the same form
as for the first problem:

U,(r,e.z) =3(r.9)Z(z), (33)

but substituting (33) into three-dimensional Laplace’s equation (6) and
separating variables we will changes the sign of the 3-rd member of the equality

NS 7 _
Hr.p)  Z(2)

and we will get, as in case with the first standard problem, two new equations:

Z"(z)+AZ(z)=0, 0<z<I, (34)
Z(0)=2(1)=0, }

and
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A,3-18=0, a<r<b, O<p<a, } (35)
l91|r:a - l91|r:b - l91|(p:0 :]91|(p:a =0, 19([‘,(0) #0.

The first one is the Sturm-Liouville problem for the line segment. Its
characteristic constants and eigen-functions looks like

2
A=, :(”Tkj , Z :zk(z)zsin”Tkz, k=12,..,0 (36)

Partial solutions of equation (35) can be found using variable separation
method

9(r, ) = R(r)®(p) (37)

Substituting (37) into (35) and separating variables we will get

r’R"+rR' = Ar’'R _ @”
R o

From this the problem for determining ®(¢) folows:

O"+vd=0; O<p<a; (38)
()], ,=0; ©(p)|,_, =0

and the problem for determining R(r) folows:

r’R"+rR' —(Ar* +v)R=0, a>r>b. (39)

The problem (39) has its characteristic constants and eigen-functions, which
looks like

v=0, =(”—”j , ©(p) =, (¢) =sin v, 0, N=1,23,..0. (40)
a

The equation (39) is Bessel equation with pure imaginary argument. Its
common solution looks like [3]
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RN =Cyl - (VAN +CK - (JAT), (41)

where Iﬁ(x),Kﬁ(x) are modified Bessel functions, Infeld function and

Macdonald function correspondingly;
A = (”Ik) k=12,..,0.

It is convenient to represent expression (41) as

VAN g (AR K (VA -K g (4N 2)
\/_b)—lr(\/_a) " Kﬂ(\/z_kb)—Kﬂ(ﬁa)'

R(r)='Ry (1) =C, “ (

The common solution of the second standard problem will take the form

U,(r,p,z) = ZZ Rnk(r)sm(—z)sm(—(p) (43)

n=1 k=1

For heterogeneous boundary conditions from (42) and (43) we have

U,(10.2),., = 6.(0.2) = 33Dy sinF 2)sin ), (44)
U(r0.2),, = 0:(0.2)= 33 Cusin Dsin( ). (45)

Expressions (44), (45) are the two-fold Fourier series with coefficients
4% 7K .7
Dy =— [ [ 9.(p.2)sin(==2)sin(=- p)ez0p (46)
al g I o
and

C.y =iﬂgz((p, 2)sin(™ 2)sin(™ p)ozdp (47)
oy I a
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It can be seen from the common solution (43) that homogeneous boundary

conditions are satisfied

U,(rp.2),, =U, (02|, =U,(rhp.2),, =U,(re.2),, =0.

The third standard problem has heterogeneous boundary conditions

Us(re.2)|,, =h(r.2), Us(ro2)]

=h,(r,z)

On the bounds of variable ¢. That is why we will start the separation of

variables with formula

U,(r.e,2) =3(r,2) ©(p).

Substituting (41) into three-dimensional
separating variables we will get

A8 _ oM _
Hr.z)  O(p) ’
2 2
where A219=r28 ’3 29 20 ’?
or or oz

From (48) follows

A,8+19=0, a<r<b, 0<z<l,

(48)

Laplace’s equation (6) and

(49)

(50)

lsl|r=a :lg|r=b :lg|z=0 :l9|z=| :O’ 19(|’,Z) $0 .

and

P"-10=0; O<p<a.

The solution of the last equation can be represented as

O(p)=E

sh \/Za sh \/Za

where E and F — constants.

shﬁ¢+Fsh\/Z(a-¢)
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Equation (50) can ba considered as the Sturm-Liouville problem.
Considering the solution of this problem in the form

H(r,z) =R(1)Z(z), (50)
we will get after substitutiong (53) into (50) and separating variables

r’R"(r) +rR'(r) LA Z"(2)

—=- = 54
r2R(r) r? Z(2) # (54)
Two common differential equations follow from the expression above:
FPR"+rR' +(—ur? +)R=0, a<r<b, R(r)_ =0, R(r)_, =0 (55)
and
Z2"(z)+uZ(z)=0, 0<z<l, Z(0)=2(1)=0. (56)
The last one has the solution looks like
Z=27(z)=sinyu,z, (57)

2
where u=u, :(”—nJ , N=12,...,00.

The first equation, which is Bessel equation, differ in structure from
analogous (13) with change of signs of items in the round brackets.
After introducing designation 1 =-v® expression (55) can be represented as

F’R"+rR'—(ur? +0*)R=0, a<r<b, R(r)| =0, R(r)| , =0.

This is modified Bessel equation. Its solution looks like [4]
Rn(r) =C1IU(\/1u—n r)+C2KU(\/IU—n r)!

where constants C and C, are determined in the same conditions as in the first
standard problem.
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As a result we will get

Rac(N="Ru (N =1, Sty 1) Koo Wty @) =K s it 110 (a2, @), (58)

® _ the k-th root of dispersion equation

L, (e @) K, (e, b)=1, (s, b) K, (Juz, 8)=0. (59)

where v =v,

As a result the solution of the third standard problem considering equation
A = -0 will be represented as

U,(he2)= 3 S 2R, (1| E, WAw? | shy/ 24, (@ =¢) sinJimz.  (60)

n

n1 k-1 “sh Aoy & shy/ A, o

From (60) we have

Us(npz)| _ =h(rz)=2.> "Ry (nFysinyu,z, (61)
n=1 k=1

Us(rip.2))_, =h,(rz)=2 > "Ry (NE,sinyu,z. (62)
n=1 k=1

From expressions (61), (62) follows

h (r,z)’R,, (r)sin./u, z roréz, (63)
|H2Rnk()\ j!

h,(r,z)°R,, (r)sin./u,z réroz, (64)
|H2Rnk()\ fl g

where the squared norm HZRnk(r)H2 is determined using formula (32), in which

J - (J2a) must be replaced with 1, (i, @) and /2% must be replaced
with
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3. ANALYSIS OF MAGNETIC FIELD
IN THE TORUS SECTOR

The components of magnetic intensity can be determined using formulas

Ho= Moy o My oY (65)

2Ny + Ny) 2N + Ny + Ny

2Np+ Ny +2

2Ny +Ny)+2

2Ny + Ny +1

Fig. 2. Fragmentation of elementary region’'s external surface into local areas in the
bounds of which the scalar magnetic potential is considered to be constant

Using piecewise-benched approximation of scalar magnetic potential functions
on external surfaces of elementary regions (Fig.2) (for example, f (r,p) and

f,(r,¢) which are assigned on the front and on the end) we can represent

constants in two-fold Fourier series as linear combination of local areas’ magnetic
potential. For example, from formulas (30) and (31) follows

Ny 2Ng

B =ZaiUi , Ay = zai—NTUi , (66)

i=1 i=Ng +1

where U; is the i-th local area’s magnetic potential;
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".au

_”Rnk(r)sm( p)rdrdg

1
” nk” N

i a

r',r® —radii of correspondingly lower and upper arc bounds of the i-th
local area on the face;
a/ ,af —angular data of correspondingly right and left radial bounds

of the i-th local area on the face.

Considering magnetic intensity’s dispensing on the external surface
of elementary region is also piecewise-constant, in according with formula (65)
we can determine relation between local values of magnetic intensity normal
components and scalar magnetic potentials in the vector-matrix form:

H =gU. (67)

The structure of square matrix g which dimensionis 2(N; + Ny + N, ) looks like

(@]
==

o] [o]> 9], []= [o]>
al; [9k 9] [9k [9k

«
=

[ [
[ [
(o]} o] [a]; []» [:] [o]
(o]} [o]; [o] []» [o] [o]
o [o] [a]; (o] [ [
(o]} (2] [a]; [o]; [e] [

N5 i i=12,N; .
(04

Formula (65) allows to determine vector-matrix expression for local area’s
magnetic intensity tangential components

H =hU.

T
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Equation (67), which express the relation between magnetic intensity
components and scalar magnetic potentials, is basic for numerical definition of
magnetic field on the whole accounting area, which consist of different torus
sectors with summarized amount of i. If iUj is the j-th scalar magnetic potential

component of the i-th sector (elementary region), then under continuous
numbering of all elementary regions’ sighting points we will have

'U,=U,,s=1,2,...,Q.

For the point with number g (qes), coincides with two sighting points of two
elementary regions numbered i and k is valid

iBnq=anq_ (68)

Extending equation (68) to all similar sighting points we will get the system of
linear algebraic equations relative to unknown vector U=[U, U, ... U,[

which looks like

AU=F, (69)

where A is a square matrix with dimension Q;

non-zero components of vector F are represented with magnetic field sources:
residual magnetization M,, of a magnet on the line of magnetization « ; scalar

magnetic potential jump values U in the sighting points, throw which current

magnetic sheet of electrical machine winding; values of additional vortex areas’
magnetic intensity (in this areas current density is non-zero) [1].
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TROJWYMIAROWA ANALIZA
POLA MAGNETYCZNEGO
WE WNETRZU PIERSCIENIA

A. AFANASEV, N. SIDOROV

STRESZCZENIE Zaprezentowano rozwigzanie analityczne
wyznaczenia wartoSci brzegowych dla rownania Laplace'a we wnetrzu
pierscienia. Zastosowano metode Fouriera z rozdzieleniem zmiennych.



