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ABSTRACT  The subject of the paper is analytical solution  
of common boundary value problem for Laplace equation in the 
interior of sector of torus with rectangular cross-section using Fourier 
method of separation of variables. 
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1. PROBLEM DEFINITION 
 
Fourier variable separation method is one of the basic analytical method  

of solution of mathematical physics boundary problem in linear medium [2].  
In terms of it the accurate development (in formula form) can be derived. 
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In electromechanics problems the cross-section of electrical machine’s active 
zone usually can be divided into three-dimensional elementary regions shaped 
as torus ring sectors with rectangular cross-sections (Fig. 1). Elementary 
regions will be considered to be irreducible discrete geometric forms within the 
bounds of which the medium is homogeneous (magnetic permeability within the 
bounds of elementary region is invariable and can variate discontinuously only 
on the bounds of the region). 

If the Dirichlet's problem’s solution for the elementary region is obtained the 
magnetizing force components (normal and tangential) on its bounds can be 
determined. Then the Dirichlet's problem for the electrical machine’s active zone 
can be solved using magnetic field’s boundary conditions for the aggregate 
amount of elementary regions [1]. 

 
 

 
 

Fig. 1. Three-dimensional elementary region 
 
 
 
 

2. THE SOLUTION OF LAPLACE'S EQUATION  
    FOR THE SECTOR OF TORUS RING 

 
The general solution of Laplace’s equation for the sector of torus ring as on 

Figure 1 can be written as 
 

),,(),,(),,(),,( 321 zrUzrUzrUzrU ϕϕϕϕ ++= ,                                (1) 
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where ),,( zrU j ϕ (j = 1, 2, 3) are partial solutions which equal specified values 

on opposite boundary surfaces and equal zero on the other four boundaries: 
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To solve the first problem the partial solutions of Laplace’s equation must be 
found. It can be represented as: 

 
)(),(),,(1 zZrzrU ϕϑϕ =                                                                             (5) 

 
(it is significant that the variable that was separated is that one on the 
boundaries of which heterogeneous (non-zero) boundary conditions are 
specified). 
 

Substituting (5) into three-dimensional Laplace’s equation 
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and separating the variables, we will get: 
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Expression (8) is two-dimensional Laplacian for two variables ),( ϕr . 
From (7) it is resulted that 
 

02 =+Δ λϑϑ , bra << , αϕ <<0 ,                                               (9) 
010111 ====

==== αϕϕ
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brar
, 0),( ≡/ϕϑ r     

 
and  
 

0)()( =−′′ zZzZ λ , lz <<0                                                           (10) 
 
 

Expression (9) is the Sturm-Liouville problem for the ring sector. 
Representing the solution of this problem as 
 

)()( ϕϑ Φ= rR ,                      (11) 
 

after substituting (11) into (9) and separating the variables we will get: 
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Two common differential equations with zero boundary conditions follow from 

(12): 
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For the solution (14) it is valid that: 
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Bessel differential equation (13) has the solution 
 

),()()( 21 rNCrJCrR
nnn λλ υυ +=         (16) 

 
where )(xJn , )(xNn  − Bessel functions of the first and the second kind 
correspondingly, constants 1C  and 2C  can be found using zero boundary 
conditions (13) 
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The non-zero solution of combined equations (17), (18) with unknown 1C  and 

2C  is possible if its determinant is zero 
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In this equation (it is called dispersing [2]) the characteristic constants 

,...3,2,1,)( == kk
nλλ  can be determined which are the k-th roots of equation (19) 

on every fixed ,....3,2,1=n  
 
From the first eqation (17) we have 
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Choosing  
 

)( 0(
1 aNC k

nn
λυ= ,           (21) 

 
(becouse of degeneracy of combined equations (17), (18) one of the constants 
can be determined arbitrarily) we will get from (20) 
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After substituting (21) and (22) into (16) we will get 
 

)()()()()( )()()()( aJrNaNrJrR k
n

k
n

k
n

k
nnk nnnn

λλλλ υυυυ −= .      (23) 

 
 
Considering (19) for the solution (16) it is also valid 
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It is convenient to represent the common solution of equation (10) 

considering equality )(k
nλλ =  as 
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where nknk BA ,  − constants. 

 
Thus partial solutions of Laplace’s equation for the first standard problem 

take the form 
 

)()()(),,( zZrRzrU nknnknk ϕϕ Φ= .       (26) 
 
 
Substituting (14), (23) and (25) into (26) and adding up partial solutions we 

can find the common solution of the first standard problem: 
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from which follows 
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Expressions (28), (29) are the two-fold Fourier series with coefficients 
nknk BA ,  
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where  

2)(rRnk = rdrrRnk )(2∫  − the norm )(rRnk  squared. According to [2] we have  
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The solution of the second standard problem is represented in the same form 
as for the first problem: 

 
)(),(),,(2 zZrzrU ϕϑϕ = ,           (33) 

 
but substituting (33) into three-dimensional Laplace’s equation (6) and 
separating variables we will changes the sign of the 3-rd member of the equality 
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and we will get, as in case with the first standard problem, two new equations: 
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The first one is the Sturm-Liouville problem for the line segment. Its 

characteristic constants and eigen-functions looks like 
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Partial solutions of equation (35) can be found using variable separation 

method 
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Substituting (37) into (35) and separating variables we will get  
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From this the problem for determining )(ϕΦ  folows: 
 

0=Φ+Φ ′′ υ ; αϕ <<0 ;         (38) 
0)(

0
=Φ

=ϕ
ϕ ; 0)( =Φ

=αϕ
ϕ  

 
and the problem for determining )(rR  folows: 
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The problem (39) has its characteristic constants and eigen-functions, which 

looks like 
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The equation (39) is Bessel equation with pure imaginary argument. Its 

common solution looks like [3] 
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nn υυ  are modified Bessel functions, Infeld function and 

Macdonald function correspondingly; 
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It is convenient to represent expression (41) as 
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The common solution of the second standard problem will take the form 
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For heterogeneous boundary conditions from (42) and (43) we have 
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Expressions (44), (45) are the two-fold Fourier series with coefficients  
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It can be seen from the common solution (43) that homogeneous boundary 
conditions are satisfied 
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The third standard problem has heterogeneous boundary conditions 
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On the bounds of variable ϕ . That is why we will start the separation of 

variables with formula 
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Substituting (41) into three-dimensional Laplace’s equation (6) and 
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From (48) follows 
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where E and F  − constants. 
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Equation (50) can ba considered as the Sturm-Liouville problem.  
Considering the solution of this problem in the form 
 

)()(),( zZrRzr =ϑ ,           (50) 
 
we will get after substitutiong (53) into (50) and separating variables 
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Two common differential equations follow from the expression above: 
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The last one has the solution looks like 
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The first equation, which is Bessel equation, differ in structure from 

analogous (13) with change of signs of items in the round brackets.  
After introducing designation 2υλ −=  expression (55) can be represented as  
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This is modified Bessel equation. Its solution looks like [4] 
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where constants 1C and 2C  are determined in the same conditions as in the first 
standard problem. 
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As a result we will get 
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where )(k

nυυ =  - the k-th root of dispersion equation 
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From (60) we have 
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From expressions (61), (62) follows 
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where the squared norm 

22 )(rRnk  is determined using formula (32), in which 
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3. ANALYSIS OF MAGNETIC FIELD  
    IN THE TORUS SECTOR 

 
The components of magnetic intensity can be determined using formulas 
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Fig. 2. Fragmentation of elementary region’s external surface into local areas in the 
bounds of which the scalar magnetic potential is considered to be constant 

 
Using piecewise-benched approximation of scalar magnetic potential functions 

on external surfaces of elementary regions (Fig.2) (for example, ),(1 ϕrf  and 
),(2 ϕrf  which are assigned on the front and on the end) we can represent 

constants in two-fold Fourier series as linear combination of local areas’ magnetic 
potential. For example, from formulas (30) and (31) follows  
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where iU  is the i-th local area’s magnetic potential; 
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i rr ,    − radii of correspondingly lower and upper arc bounds  of  the  i-th  
 local area on the face; 

ë
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ï
i αα ,  − angular  data  of  correspondingly  right  and  left radial   bounds  

 of the i-th local area on the face. 
 

Considering magnetic intensity’s dispensing on the external surface  
of elementary region is also piecewise-constant, in according with formula (65) 
we can determine relation between local values of magnetic intensity normal 
components and scalar magnetic potentials in the vector-matrix form: 
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The structure of square matrix g  which dimension is )(2 ÙÖT NNN ++  looks like 

 
[ ]11g  [ ]12g  [ ]13g  [ ]14g  [ ]15g  [ ]16g  

[ ]21g  [ ]22g  [ ]23g  [ ]24g  [ ]25g  [ ]26g  

[ ]31g  [ ]32g  [ ]33g  [ ]34g  [ ]35g  [ ]36g  

[ ]41g  [ ]42g  [ ]43g  [ ]44g  [ ]45g  [ ]46g  

[ ]51g  [ ]52g  [ ]53g  [ ]54g  [ ]55g  [ ]56g  

[ ]61g  [ ]62g  [ ]63g  [ ]64g  [ ]65g  [ ]66g  

 
 
For example, constituent of matrix [ ]11g  looks like 
 

∑∑
∞

=

∞

=

=
1 1

)(

)(
~sin

sh

ch

n k
jk

n

k
n

iji
n

l

l
g ϕ

α
π

λ

λ
α , TNji ,...,2,1, = . 

 
 
Formula (65) allows to determine vector-matrix expression for local area’s 

magnetic intensity tangential components  
 

UhH =τ . 
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Equation (67), which express the relation between magnetic intensity 
components and scalar magnetic potentials, is basic for numerical definition of 
magnetic field on the whole accounting area, which consist of different torus 
sectors with summarized amount of i . If j

iU  is the j-th scalar magnetic potential 

component of the i-th sector (elementary region), then under continuous 
numbering of all elementary regions’ sighting points we will have 

 
sj

i UU = , s = 1, 2, …, Q. 
 
For the point with number q ( )sq∈ , coincides with two sighting points of two 

elementary regions numbered i and k is valid 
 

nq
k

nq
i BB = .                     (68) 

 
Extending equation (68) to all similar sighting points we will get the system of 

linear algebraic equations relative to unknown vector [ ]TNUUU …21=U  
which looks like 

 
FUA = ,            (69) 

 
where A  is a square matrix with dimension Q;  
non-zero components of vector F  are represented with magnetic field sources: 
residual magnetization αrM  of a magnet on the line of magnetization α ; scalar 
magnetic potential jump values sU in the sighting points, throw which current 
magnetic sheet of electrical machine winding; values of additional vortex areas’ 
magnetic intensity (in this areas current density is non-zero) [1]. 
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TRÓJWYMIAROWA ANALIZA 
POLA MAGNETYCZNEGO 

WE WNĘTRZU PIERŚCIENIA 
 
 

A. AFANASEV, N. SIDOROV 
 
STRESZCZENIE   Zaprezentowano rozwiązanie analityczne 
wyznaczenia wartości brzegowych dla równania Laplace'a we wnętrzu 
pierścienia. Zastosowano metodę Fouriera z rozdzieleniem zmiennych. 

 
 

 


