PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

CFD modelling of two-phase liquid-liquid flow in a SMX static mixer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper provides an overview of the application of Computational Fluid Dynamics tools for predicting transport processes in two-phase flow in a SMX static mixer. The overview is achieved by taking a brief look at factors: mesh generation, development of sub-models, post-processing including validation and quantitative verification of CFD results with experimental data. Two types of numerical approach were used in the simulations: the Reynolds averaged Navier-Stokes in the steady-state mode with the standard k-??turbulence model and Large Eddy Simulations in the unsteady mode. Both CFD techniques were applied to calculate flow velocities, pressure drop and homogenisation level in a SMX static mixer of the liquid-liquid mixture. The steady state drop size distribution was obtained by implementation procedure containing the population balance equation, where transport equations for the moments of the drop size distribution are solved and the closure problem is overcome by using the Quadrature Method of Moments.
Rocznik
Strony
41--49
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
  • Institute of Chemical Engineering and Environmental Protection Processes, West Pomeranian University of Technology, al. Piastow 42, 71-065 Szczecin
Bibliografia
  • 1. Bottone, F. (2004). Investigation into the influence of solid concentration on solid-liquid mixing using PIV technique, Final year project thesis, University of Pisa, Italy.
  • 2. Virdung, T. & Rasmuson, A. (2003). PIV measurements of solid-liquid mixing at elevated concentrations, 11th European Conference on Mixing, 3-5 October 2003 (pp.129-136). Bamberg, Germany.
  • 3. Liu, S., Hrymak, N. A. & Wood, P. E. (2005). Drop breakup in an SMX static mixer in laminar flow, Can. J Chem. Eng., 83, 793-807. DOI: 10.1002/cjce.5450830501.
  • 4. Rama, Rao N. V., Baird, M. H. I., Hrymak, A. N. & Wood, P. E. (2007). Dispersion of high-viscosity liquid-liquid systems by flow through SMX static mixer elements, Chem. Eng. Sci., 62, 6885-6896. DOI: 10.1016/j.ces.2007.08.070.
  • 5. Fradette, L., Tanguy, P., Li, H. Z. & Choplin, L. (2007). Liquid/liquid viscous dispersions with a SMX static mixer, Chem. Eng. Res. Des., 85 (A3), 395-405. DOI: 10.1205/cherd06206.
  • 6. Legrand, J., Morancais, P. & Carnelle, G. (2001). Liquid-liquid dispersion in an SMX-Sulzer static mixer, Chem. Eng. Res. Des, 79 (Part A), 949-956. DOI: 10.1205/02638760152721497.
  • 7. Das, P. K., Legrand, J., Morancais, P. & Carnelle, G. (2005). Drop breakage model in static mixers at low and intermediate Reynolds number, Chem. Eng. Sci., 60, 231-238. DOI: 10.1016/j.ces.2004.08.003.
  • 8. Theron F., Le Sauze N. & Ricard A. (2008). Emulsification using a SMX Sulzer static mixer in turbulent flow for a microencapsulation process, 6th International Symposium on Mixing in Industrial Process Industries — ISMIP VI, 17-21 August 2008. Niagara Falls, Ontario, Canada.
  • 9. Streiff, F. A., Mathys, P. & Fischer, T. U. (1997). New Fundamentals for liquid-liquid dispersion using static mixers, Recents Progres en Genie des Procedes, 11(51), 307-314, ISBN 2-910239-25-X, editor Lavoisier, Paris, France.
  • 10. Pahl, M. H. & Muschelknautz, E. (1982). Static mixers and their applications. Int. Chem. Eng., 22, 2, 197-205.
  • 11. Allocca, P. (1982). Mixing efficiency of static mixing units in laminar flow. Fib. Prod., 8, 12-19.
  • 12. Grosz-Roll, F. (1980). Assessing homogeneity in motionless mixers, Int. Chem. Eng., 20, 542-549.
  • 13. Cybulski, A. & Werner, K. (1986). Static mixers — criteria for applications and selection, Int. Chem. Eng., 26(1), 171-180.
  • 14. Rauline, D., Le Blevec, J. M., Bousquet, J. & Tanguy, P. A. (2000), A comparative assessment of the performance of the Kenics and SMX static mixers, Chemical Engineering Research and Design, 78 (Part A), 389-396. DOI: 10.1205/026387600527284.
  • 15. Fradette, L., Li, H. Z., Choplin, L. & Tanguy, P. (1998). 3D finite element simulation of fluids flow through a SMX static mixer, Comp. Chem. Eng., 22, S759-761, DOI: 10.1016/S0098-1354(98)00142-2.
  • 16. Hirschberg, S., Koubek, R., Moser, F. & Schock, J. (2009). An improvement of the Sulzer SMX™ static mixer significantly reducing the pressure drop, Chem. Eng. Res. Des., DOI:10.1016/j.cherd.2008.12.021.
  • 17. Visser, E. J., Rozendal, P. F., Hoogstraten, H. W. & Beenackers, A. C. M. (1999). Three dimensional numerical simulation of flow and heat transfer in the Sulzer SMX static mixer, Chem. Eng. Sci., 54, 2491-2500. DOI: 10.1016/S0009-2509(98)00536-3.
  • 18. Heniche, M., Tanguy, P. A., Reeder, M. F. & Fasano, J. B. (2005). Numerical investigation of blade shape in static mixing, AIChE J, 51(1), 44-58. DOI: 10.1002/aic.10341.
  • 19. Liu, S., Hrymark, A. N. & Wood, P. E. (2006a), Design modifications to SMX static mixer for improving mixing, AIChE J, 52(1), 150-157. DOI: 10.1002/aic.10608.
  • 20. Liu, S., Hrymak, A. N. & Wood, P. E. (2006b). Laminar Mixing of Shear Thinning Fluids in a SMX Static Mixer. Chem. Eng. Sc., 61(6), 1753-1759. DOI:10.1016/j.ces.2005.10.026.
  • 21. Fourcade, E., Wadley, R., Hoefsloot, H. C. J., Green, A., & Iedema, P. D. (2001). CFD calculation of laminar striation thinning in static mixer reactors. Chem. Eng. Sc., 56(23), 6729-6741. DOI: 10.1016/S0009-2509(01)00297-4.
  • 22. Streiff, F. A., Jaffer, S. & Schneider, G. (1999). The design and application of static mixer technology. 3rd International Symposium on Mixing in Industrial Processes, 26-27 September 1999, (pp.107-114), Osaka, Japan: European Federation of Chemical Engineering.
  • 23. Lauder, B. E. & Spalding, D. P. (1974). The numerical computation of turbulent flows, Comp. Meth. App. Mech. & Eng., 3(2), 269-289. DOI: 10.1016/0045-7825(74)90029-2.
  • 24. Wilcox, D. C. (1993). Turbulence Modelling for CFD, DCW Indus. Inc., California.
  • 25. Sagaut, P. (2002). Large Eddy Simulation for Incompressible Flows, Springer-Verlag, Berlin.
  • 26. Marchisio, D. L., Vigil, R. D. & Fox, R. O. (2003). Quadrature method of moments for aggregation-breakage processes, J. Coll. Inter. Sci., 258, 322-334. DOI: 10.1016/S0021-9797(02)00054-1.
  • 27. McGraw, R. (1997). Description of aerosol dynamics by the quadrature method of moments, Aerosol Sci. Tech., 27, 2, 255-265. DOI: 10.1080/02786829708965471.
  • 28. Gordon, R. (1968). Error bounds in equilibrium statistical mechanics, J. Math. Ph., 9(5), 655-672.
  • 29. Randolph, A. D. & Larson, M. A. (1988). Theory of particulate processes, Academic Press, San Diego.
  • 30. Pianko-Oprych, P. & Jaworski, Z. (2004). The numerical modelling of two-phase flows in static mixers, Inż. Chem. i Proc., 25, 341-362.
  • 31. Pacek, A. & Nienow, A. (1997). Breakage of oil drops in a Kenics mixer, Proc. Inten., 165-172.
  • 32. Li, H. Z., Fasol, C., & Chopin, L. (1997). Pressure drop of Newtonian and non-Newtonian fluids across a Sulzer SMX static mixer. Chem. Eng. Res. Des., 75(8) 792-796. DOI: 10.1205/026387697524461.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0053-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.