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TWO THEOREMS ABOUT ELECTROMAGNETIC FORCE
IN ACTIVATED ANISOTROPIC REGIONS

DWA TWIERDZENIA O SIŁACH ELEKTROMAGNETYCZNYCH
WE WZBUDZONYCH ŚRODOWISKACH ANIZOTROPOWYCH

Abstract The paper has dealt with two problems of calculation of electromagnetic force/torque. The first one 
is for magnetically anisotropic and conductive region. It has been presented sufficient condition for surface-
integral representation of electromagnetic force/torque in conductive and anisotropic region. The second ap-
proach deals with the problem of independence of force/torque calculated value from shape of integral-surface. 
The second theorem gives the sufficient condition for this independence for Maxwell stress tensor method is 
applied. 

1. Electromagnetic field forces

The electromagnetic field forces [1, 2] theoreti-
cal analysis is still vital problem [3, 4, 5, 6]. For 
evaluation of the electromagnetic force density 
is applied the following relation

MNff L


 (1)

which is proved [12]. The proof bases on 
Lorentz force density formula, Maxwells equa-
tions, and assumptions that displacement cur-
rent (Poynting force [3]) and magnetic polariza-
tion (hysteresis force) can be neglected. In Eqn 

(1) Lf


denotes Lorentz force density, N


is the 
so-called nonhomegenity component [12] (it 
appears in nonhomogeneous regions), and 

)B(gradB)(M uvuvvu2
1 


(2)

is the anisotropy component for magnetic field.
Total electromagnetic force/torque can be cal-
culated by the following equation

  


uuudivif (3)

where Maxwell’s stress appears [12].

2. The first theorem – surface-integral 
representation for magnetically aniso-
tropic and conductive region 
The first theorem considers the equivalence 
between both volume and surface integrals re-
presentations for total electromagnetic force
/torque. This problem could be called as 
force/torque surface-integral representation 
problem.

volume integral surface integral

Fig. 1. Equivalence of volume and surface inte-
grals

This problem is analogous to the surface-
integral representation of total electric charge 
placed in finite volume due to Gaussian law. 
The next analogous problem appears for Am-
pere law. The contour-integral representation of 
total currents passing through the surface is 
considered. It is known [1, 2, 4, 5, 6, 11] that 
the surface-integral representation for electro-
magnetic field forces can be introduced for 
electromagnetic field regions if the Maxwell 
stress tensor is symmetrical. The symmetry of 
the Maxwell stress tensor is guaranteed for 
isotropic media, only [1, 2]. The main interest is 
whether for some anisotropic media the surface-
integral of force/torque representation is tenab-
le. The answer is positive under an extended 
condition. The theorem of surface integral rep-
resentation is satisfied for either isotropic or 
anisotropic media (normal anisotropy). For 
isotropic medium the reluctivity (permeability) 
matrix is diagonal and all pivot values are equal
to each other. The normal anisotropy is stated 
for the media which reluctivity (permeability) 
matrix is symmetrical one. There are also media 
for those the reluctivity (permeability) matrix is 
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asymmetrical (the so-called active media [8]). It 
will be proved that 
for magnetic field where the following condi-
tions are satisfied
- no nonhomogeneous force(no reluctance 
force),
- no hysteresis phenomenon appears,

the force calculated by Lorentz’s (volume 
integral) and Maxwell (surface integral) me-
thods lead to the same result for magnetically 
anisotropic region if reluctivity matrix is sym-

metrical
i.e. for u ≠ v  it is satisfied

uvvu  (4)

If the condition (4) is satisfied thus the aniso-
tropy component vanishes Mu = 0 - due to Eqn 
(2). It should be pointed out that if the condition 
(4) is not satisfied 

uvvu  (5)

the surface-integral representation is not possib-
le, generally. The mathematical proof of this 
theorem is based on Eqn (1). Indeed, the as-
sumptions specified above and Eqn (1) for uth

force component lead to the relation as follows

  uuuuLuu divMff 


(6)

For properly chosen co-ordinate system it can 
be set 0u  (e.g. for Cartesian coordinate 

system always 0u  , for cylindrical system 

0 ), thus according to (3) is can be written

 uLuuuu divfLfL 


(7)

where Lu means lame coefficient. Applying 
Gaussian theorem is obtained the formula

 
S

u

V

uu SddVfL


(8)

that proves the thesis. This means that for re-
gions with symmetric reluctivity matrix (either 
isotropic or normal anisotropic region) the 
Lorentz force/torque can be presented by sur-
face-integral of the Maxwell stress tensor. In 
other words, the surface-integral representation 
is possible for media with symmetric reluctivity 
matrix. The above statement, however it applies 
only to a small range group of anisotropic mate-
rials, is important from theoretical point of 
view. In order to explain this theorem in physi-
cal way electromechanical converter with solid 

cylindrical rotor has been considered. An ex-
ample confirms this thesis for asymmetrical 
stress tensor for simple electromechanical con-
verter containing anisotropic (paragraph 5). The 
analysis of electromagnetic field has been pro-
vided with the help of variable separation me-
thod. This way of analysis is chosen for giving 
precise insight into torque calculations.

3. The second theorem – surface-integral 
representation for magnetically aniso-
tropic and nonconductive region 
The surface-integral representation of electro-
magnetic force/torque it is important problem 
from both theoretical and computational point 
of view. Let us regard electromagnetic force/
torque that is exerted in finite region R (e.g. 
electromechanical converter moving part - ro-
tor, carriage) can be evaluated by surface 
integral over the surface S (e.g. either S1 or S2 ≠
S1). The surface S must surround the whole 
finite region R. If the outer region Rout does not 
involve electromagnetic force/torque thus the 
surface S (e.g. S1 or S2 ≠ S1) can be placed dif-
ferently in the gap fulfilling condition that it 
must surrounds whole exerting force region R. 
Exemplary, for electromechanical converter 
such as rotating electric machine the electro-
magnetic torque does not depend on the radius 
of surface S placed in the gap region – Fig. 2.
The independence of the force/torque surface 
integral results from magnetic feature of the gap 
– it is the air-gap (i.e. the vacuum gap).

surface S1
surface S2region R

Fig. 2. The electromagnetic torque evaluation
by surface integral – cross-section

The problem affects to electrostatic while calcu-
lating total electric charge with the help of 
Gauss law. The outer surface (Gaussian sur-
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face) must be spread so as to surround the 
whole charge independently of its shape, but the 
surrounding region must not contain any 
charge. The gap which surrounds the active 
region R (e.g. rotor) could be filled with ferrof-
luid [9, 10]. As a consequence, the outer region 
Rout (e.g. the gap) could be either isotropic or 
anisotropic. The second theorem affects the 
condition for possibility of surface-integral
representation for different magnetic features of 
surrounding region Rout (e.g. the gap). Let us 
consider problem of calculation of electromag-
netic force/torque acting on region R. The re-
gion R affecting electromagnetic force/torque is 
included in volume V. The volume V can be 
presented as a sum of 

)R/V(RV  (9)

where the V/R = Rout denotes the region which 
surrounds active region R. The integrals that 
lead to total electromagnetic force and torque 
values exerted in region R 

 
outRRV

V dVfdVfdVfF


(10a)

and

 
outRRV

V dV)fr(dV)fr(dV)fr(T
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(10b)

respectively. The total electromagnetic force 
and torque are affected in region R, thus

oute

R

eV FFdVfFF
out


  (11a)

and

oute

R

eV TTdV)fr(TT
out


  (11b)

where VF


, VT


are force and torque calculated 

over the volume V; eF


, eT


are total electro-

magnetic force and torque; outF


 , outT


 denote 

the residual integrals over the outer region Rout.
Now, the theoretical problem can be formulated 
precisely. Whether the electromagnetic force/
torque arising in region R can be calculated by 
surface-integral over the volume constant ? 
Practical meaning of this question is whether 
the electromagnetic force/torque can be calcu-
lated by surface-integral over different surfaces 
which includes the experiencing force/torque 
region R. If the answer is positive the total elec-

tromagnetic force/torque can be calculated for 
any surface which surrounds R (e.g. for diffe-
rent boundary surfaces S1 and S2 as shown in 
Fig. 3).

surface S1
surface S2

region Rout

region R

Fig. 3. The electromagnetic torque does not 
depend on radius of integral-surface in air-gap

The solution of the problem results from Eqns
(1), (2). If for the region Rout is assumed, that: it 
is nonconductive, frequency is small (no dis-
placement current), region is homogeneous, and
there is no hysteresis phenomenon, hence only 
anisotropic component can give a contribution 
to residual integrals in Eqns (11a,b). In other 
words, only magnetic anisotropy of the gap do 
not affect on electromagnetic force/torque, be-
cause the anisotropy component can be diffe-
rent from zero if for u ≠ v it is 

  uvvu (12)

Now, it could be formulated the second theorem
The electromagnetic force/ torque value calcu-

lated with the help of
either volume integral or Maxwell stress tensor 

surface integral 
does not depend on surface position in the gap

if the condition (12) is satisfied.

4. Electromagnetic field

In order to confirm the theoretical results des-
cribed above, an example of electromechanical 
converter with solid conductive rotor is consi-
dered Fig. 4.
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rotor shaft

the air-gap

solid rotor

  conducting and
anisotropic layer

R R+ga

stator coils

solid rotorair-gap
rotor shaft



   
Fig. 4. Electromechanical converter with solid 
rotor - a), its cross section -b)

The numerical errors are omitted by applying 
analytical solution of electromagnetic field 
distribution and electromagnetic torque calcula-
tion. 
The analysis of electromagnetic field has been 
provided with the help of variable separation 
method [8]. This way of analysis is chosen for 
giving precise insight into electromagnetic tor-
que calculations, and may be treated as a 
benchmark test task [12, 13, 14]. For cylindrical 
converter (r, , z) the z-component of magnetic 
vector potential is

zzzz iAiAAA


 (13)

The accuracy of such assumptions for magnetic 
vector potential symmetry results from simpli-
fied construction of mechanical converter -
Fig. 4. The magnetic flux density by means of 
vector magnetic potential is as follows 

r
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where for cylindrical coordinate system (x1 = r, 
x2 = , x3 = z). The model of induction motor 
with solid rotor can be analyzed under the fol-
lowing assumptions:
- electric displacement current vanishes (due to 

the small supply frequency),
- stator windings exert the sinusoidal p pair-

pole mmf

s() = scos(p-2ft+o) (15)

where s stands for the magnitude of mmf,  is 
the position angle, f means the stator current 
frequency, there exists the cylindrical anisotro-
py of the magnetic reluctivities for machine 
rotor, thus the reluctivity matrix is built of four 
coefficients rr = r,  = , r, r, and all of 
them can be different, conductivity of rotor is 
(isotropic parameter), rotor is homogeneous,
hysteresis phenomenon does not appear.

5. Electromagnetic torque calculation -
example
The assumed symmetry of the electromechani-
cal converter enables to carry twodimensional 
analysis. Magnetic field strength components 
are

H B Br rr r r     (16)

H B Br r      (17)

the electric field strength is of the form of

AiE


 (18)

where A is magnetic field vector potential for 
steady-state,  rotor current angular speed,

E


means electric field strength. Basing on 
Maxwell’s equation

E)H(curl

 (19)

the Eqns (16) - (19) lead to equation
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The Eqn (20) is solved by the separation of the 
variables in the following form

A = Z(r)S() = ZS, (21)

with the steady-state function S() for mono-
harmonic field in the form of:

)ipexp()(S  (22)

The variable separation for functions Z(r) and 
S() leads to the differential equation
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where 








2
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22

B

with solution given in Table 1.
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Table 1. Solution of the differential equations

anisotropic rotor the gap
)z(fb)z(fa)z(Z 2a1a 

)z(Iz)z(f
Bp

c
1 

)z(Kz)z(f
Bp

c
2 

)z(fb)z(fa)z(Z 21  
Bpc

1 z)z(f  ,
Bpc

2 z)z(f 

The four unknown constants aa, ba, a, b can be 
evaluated by formulating the boundary condi-
tions gap. The magnetic flux density compo-
nents are equal to 

 
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The magnetic field distribution leads to elec-
tromagnetic torque values. 
The electromagnetic torque Te equals to





V

re dSBrHT (24)

where l is rotor length, r is the radius of surface 
placed in the gap. The total electromagnetic 
torque can be calculated also by means coener-
gy Wc as follows
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(25)

The both Maxwell and coenergy methods give 
the same results always. The material (anisotro-
py) torque component is equal to

 


 


V

rrr2
1

eM dV
r

B
B)(T (26)

and it does not vanish for asymmetrical aniso-
tropy medium r ≠ r.
Exemplary, it is considered cylindrical motor 
for it γ = 50∙106 S/m (rotor conductivity), a = 
0.05 m (conductive rotor layer width), R = 
0.1 m (rotor outer radius), l = 0.25 m (rotor 
length), g = 0.0015 m (the gap width), Θ1 = 
560 A (magnetomotive force first harmonic), 
p = 2 (pair pole number), n = 20 s-1 (rotor 
speed), rr = r = 0/3 (radial reluctivity),  =
 = 0/2 (tangential reluctivity) and different 
anisotropy reluctivities r, r (Table 2). 
The Table 2 and the Figs 5a,b confirm that if 
condition (4) is satisfied the first theorem thesis 
is fulfilled. However the cases c) and d) show 
that if condition (4) is not satisfied the first 
theorem thesis can not be applied.

Table 2. Examples for torques evaluation for 
first theorem presentation

magnetic reluctivities First theorem

a) r = 0.00    r = 00
Eqn (4) true

-  Fig 5a.

b) r = 0.20   r = 0.20
Eqn (4) true -

Fig 5b

c) r = 0.20   r = 0.30
Eqn (4) false-  

Fig 5c

d) r = 0.30   r = 0.20
Eqn (4) false -  

Fig 5d
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Fig. 5. Electromagnetic torque vs. speed (Max-
well method - line, Lorentz method - points)
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Examples for the second theorem are presented 
for the same data of cylindrical solid rotor mo-
tor and for introduced the anisotropic magneti-
cally gap as specified in the Table 3.

Table 3. Examples for torques evaluation for 
second theorem presentation

magnetic reluc-
tivities

First theorem

a) rδ = 0.00   =   

rδ = 00

Eqn (12) is satisfied

-  Fig 6a.

b) rδ = 0.50   =   

rδ = 0.00

Eqn (12) is NOT satis-

fied -  Fig 6b
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Fig. 6. Electromagnetic torque vs. radius for 
the gap region (Maxwell method - line, Lorentz 
method - points)

The Figs 6a,b present the electromagnetic tor-
que value obtained by Maxwell’s method for 
different radius of integration surface (cylin-
drical surface). The radius changes from r = R 
(outer solid rotor surface) up to R+g (inner sta-
tor surface). The Table 3 and the Fig. 6a con-
firm that if condition (12) is satisfied the second 
theorem thesis is fulfilled. In opposite, in the 
case b) is shown that if condition (12) is not 
satisfied the second theorem thesis can not be 
applied.

6. Conclusions
There have been presented two theorems stated 
in the main text proved by author in 1997 and 
2007 about electromagnetic force/torque in 
anisotropic medium.
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