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INFLUENCE OF ROTOR POSITION
ON OVERSATURATED AREAS SIZE OF INDUCTION MACHINE 

MAGNETIC CIRCUIT

Abstract: This article contains a solution of magnetic field distribution with oversaturated areas localization 
and description. The rotor position is important for the maximal magnetic circuit saturated identification and 
oversaturated areas size influence of magnetic circuit due to the variable magnetic reluctance of path. 
Influence of rotor position on saturated magnetic circuit is analyzed with step on twenty angular positions per 
rotor slot pitch. This analysis is done for 3-phase 1.1 kW induction machine by finite element method. This the 
time behavior of magnetic flux density is analyzed in air gap for different load conditions of machine. The pa-
per contains also general postprocessor results juxtaposition.

1. Introduction

Generally, the magnetic circuit of electrical ma-
chines is never whole oversaturated. Due to this 
effect, the magnetic field distribution is differ-
rent than in case of non-oversaturated magnetic 
circuit. That is the air gap size is variable due to 
the oversaturated areas of magnetic circuit. For
induction machine is usually considered an 
equivalent air gap size with constant size re-
gardless of magnetic circuit saturation. The fi-
nite element method is used for localization of 
oversaturated areas in case of different equiva-
lent circuit parameters due to the loads. Actual-
ly, only one value of each current is known, but 
for electromagnetic field calculation is neces-
sary to known value of current for each slot. 
The current is obtained by returned calculation,
Eq.1-3 from [1], Table II.
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where: m – no. of phases, N – no. of coil 
turns,  – slot space factor.

2. Initial conditions
Briefly, it is necessary to set few conditions to 
the correct function of solver, as like as the de-
finition of used magnetic circuit material, in-
cluding the material definition of coil, air-gap, 
slot wedge, slot lining and shaft (Table 1). The 

next step is applying the vector parallel flux po-
tential onto the border line of model, forms an 
integral part of electromagnetic field calcula-
tion.

Table 1. Material definition
Material Properties
Sheets
Copper
Slot wedge and lining
Air-gap
Shaft

Steel M54 BH Curve
μr=0.99999
μr=1.10000
μr=1.00000
μr=150

Table 2. Stator and rotor phase currents

No. US [V] IS [A] φS [°] IR [A] φR [°]
1 230 2.257 -54.78   78.49 180.54
2 230 2.643 -43.45 117.86 179.74
3 230 3.111 -35.82 156.21 178.99
4 230 3.842 -29.83 207.47 178.08
5 230 4.410 -22.59 254.81 176.93
6 230 5.460 -18.08 326.26 175.54

Algorithm for a distribution of the rotor and sta-
tor currents into the slots (Fig. 1) was used and 
it works with these parameters: stator current 
and phase – ISM, FSM; rotor current and phase –
IRM, FRM; No. of stator coil turns – NTS; No. of 
rotor coil turns – NTR; No. of stator slots – SD;
No. of rotor slots – RD; stator cross section area 
– SSD; rotor cross section area – SRD; stator cur-
rent density – JSS; rotor current density – JSR.
The rotor current calculation:
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where: RDx  0
The stator current calculation:
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where: 13,7,0x

Fig. 1. Sample of the current distribution into 
the rotor bars

3. Oversaturated areas (due to the IM 
loading)
On the Fig. 3 up to Fig. 8 is shown the magnetic 
field distribution for different stator and rotor 
phase currents for rotor angular position 0°. On 
the Fig. 2 is shown a behavior of magnetic flux 
density in the center of air gap for cases No. 1 
up to No. 6. If the value of magnetic flux densi-
ty is over the 2.0 T (this value depends on type 
of magnetic circuit material), then the magnetic 
circuit is oversaturated and the iron losses 
would be increasing. The magnetic flux density 
values for some important part of magnetic cir-
cuit are shown in Table 3 – BSY (stator yoke), 
BRY (rotor yoke), BSH (stator head teeth), BRH

(rotor head teeth), BAG (air gap) and BM (max-
imal value of magnetic circuit flux density)
with comparison sizes of oversaturated areas 
(AOS).
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Fig. 2. Magnetic flux density in the center of 
AG

Fig. 3. Magnetic field distribution for case No.1

Fig. 4. Magnetic field distribution for case No.2

Fig. 5. Magnetic field distribution for case No.3

Fig. 6. Magnetic field distribution for case No.4
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Fig. 7. Magnetic field distribution for case No.5

Fig. 8. Magnetic field distribution for case No.6

Table 3. Comparison table

No.
BSY

[T]
BRY

[T]
BSH

[T]
BRH

[T]
BAG

[T]
BM

[T]
AOS

[%]
  1 1.04 1.58 0.80 0.62 0.55 2.51 3.69
  2 1.09 1.61 0.84 0.65 0.57 2.64 3.25
  3 1.12 1.63 0.87 0.68 0.60 2.70 2.91
  4 1.17 1.66 0.91 0.72 0.62 2.79 2.76
  5 1.20 1.67 0.93 0.75 0.64 2.84 2.43
  6 1.25 1.71 0.96 0.78 0.66 2.89 2.20

3. Oversaturated areas (due to the rotor 
position)

Note:  99.17821.156ˆ;82.35111.3ˆ AIAI RS

Fig. 9. Behavior of flux density for 0°

The maximal value of flux density: 2.89 T
Flux density value in the center air gap: 0.60 T

Oversaturated areas size: 2.911%

Fig. 10. Behavior of flux density for 0.7826°

The maximal value of flux density: 2.971 T
Flux density value in the center air gap: 0.58 T
Oversaturated areas size: 2.876%

Fig. 11. Behavior of flux density for 1.5652°

The maximal value of flux density: 2.872 T
Flux density value in the center air gap: 0.59 T
Oversaturated areas size: 2.902%

Fig. 12. Behavior of flux density for 2.3478°

The maximal value of flux density: 2.848 T
Flux density value in the center air gap: 0.59 T
Oversaturated areas size: 2.895%
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Fig. 13. Behavior of flux density for 3.1304°

The maximal value of flux density: 2.783
Flux density value in the center air gap: 0.58 T
Oversaturated areas size: 2.700%

Fig. 14. Behavior of flux density for 3.9130°

The maximal value of flux density: 2.836 T
Flux density value in the center air gap: 0.59 T
Oversaturated areas size: 2.905%

Fig. 15. Behavior of flux density for 4.6956°

The maximal value of flux density: 2.848 T
Flux density value in the center air gap: 0.59 T
Oversaturated areas size: 2.901%

Fig. 16. Behavior of flux density for 5.4782°

The maximal value of flux density: 2.942 T
Flux density value in the center air gap: 0.60 T
Oversaturated areas size: 2.917%

Fig. 17. Behavior of flux density for 6.2608°

The maximal value of flux density: 2.797 T
Flux density value in the center air gap: 0.61 T
Oversaturated areas size: 2.924%

Fig. 18. Behavior of flux density for 7.0434°

The maximal value of flux density: 2.797 T
Flux density value in the center air gap: 0.63 T
Oversaturated areas size: 3.128%
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Fig. 19. Behavior of flux density for 7.8260°

The maximal value of flux density: 2.791 T
Flux density value in the center air gap: 0.60 T
Oversaturated areas size: 2,.913%

Fig. 20. Behavior of flux density for 8.6086°

The maximal value of flux density: 2.949 T
Flux density value in the center air gap: 0.59 T
Oversaturated areas size: 2.868%

Fig. 21. Behavior of flux density for 9.3912°

The maximal value of flux density: 2.836 T
Flux density value in the center air gap: 0.59 T
Oversaturated areas size: 2.896%

Fig. 22. Behavior of flux density for 10.1738°

The maximal value of flux density: 2.845 T
Flux density value in the center air gap: 0.59 T
Oversaturated areas size: 2.900%

Fig. 23. Behavior of flux density for 10.9564°

The maximal value of flux density: 2.847 T
Flux density value in the center air gap: 0.57 T
Oversaturated areas size: 2.690%

Fig. 24. Behavior of flux density for 11.7390°

The maximal value of flux density: 2.800 T
Flux density value in the center air gap: 0.60 T
Oversaturated areas size: 2.897%
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Fig. 25. Behavior of flux density for 12.5216°

The maximal value of flux density: 2.887 T
Flux density value in the center air gap: 0.60 T
Oversaturated areas size: 2.915%

Fig. 26. Behavior of flux density for 13.3042°

The maximal value of flux density: 2.943 T
Flux density value in the center air gap: 0.61 T
Oversaturated areas size: 2.924%

Fig. 27. Behavior of flux density for 14.0868°

The maximal value of flux density: 2.799 T
Flux density value in the center air gap: 0.61 T
Oversaturated areas size: 2.921%

Fig. 28. Behavior of flux density for 14.8694°

The maximal value of flux density: 2.731 T
Flux density value in the center air gap: 0.62 T
Oversaturated areas size: 3.000%
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