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MODELING OF A GRID CONNECTED PHOTOVOLTAIC SYSTEM 
USING A GEOMETRIAL TRANSFORMER MODEL

Abstract: A grid connected single-phase photovoltaic system is modeled and simulated using a geometrical 
core-type transformer model. The transformer model that is used takes into account the magnetic core geomet-
ry as well as the hysteresis loop of the core material. In particular, the hysteresis loop is introduced using the 
Jiles-Atherton theory of magnetic hysteresis. Moreover, proper models for the photovoltaic array and the in-
verter have been used to assemble a system model in the field of state equations. Comparison with published 
results has been made with a prototype installation of the same configuration. Very good agreement is accom-
plished between the predicted and measured values. Thus, the proposed methodology can be used for the mo-
deling of single-phase or three-phase grid connected photovoltaic systems.

1. Introduction
The progress being made in the technology of 
photovoltaic (PV) cells leads to an increased 
use of grid connected PV systems. The harmo-
nic currents injected into the utility grid may be 
a serious problem since they could lead to un-
acceptable levels of wave shapes distortion. 
Although the dc-ac inverters are usually based 
on the PWM method, in this paper a system 
model for the configuration of a grid connected 
PV system, Fig. 1, located in Phoenix, Arizona 
and known as John F. Long PV System is pre-
sented [1]-[3]. Specifically, a detailed transfor-
mer model is used to represent the transformer 
that connects the PV installation with the utility 
grid. Moreover, an incremental model of the PV 
generator is used to permit a system model in 
the field of state equations. In the system simu-
lation presented in [1] the transformer is simpli-
fied to a linear equivalent inductance and con-
sequently, differences between measured and 
predicted values have been revealed. Using the 
proposed system model, simulation results are 
presented which when compared with measured 
values found in [1] ensure the validity of the 
proposed system model.
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Fig. 1. A block diagram of a possible grid con-
nected PV system

2. Components modeling

2.1. Photovoltaic generator model

The well-known i-v non-linear relations 
describing a PV generator are
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which is an implicit relation or equivalently
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which is an explicit relation, more easily hand-
led mathematically.
In (1) and (2) ipv and vpv are the output current 
and voltage respectively, rsr is the series resis-
tance, Iph is the light-generated current, Io is the 
diode saturation current, W = q/(wKTa) is the 
coefficient of the exponential, q is the elec-
tron’s charge, w is a curve fitting constant, K is 
the Boltzmann’s constant and Ta is the absolute 
temperature.
In this work, an incremental model of the PV 
generator is employed [4], [5]. Expanding the 
vpv(ipv) relation (2) in a Taylor series, keeping 
only the first two terms and defining

n
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

 as the incremental resistance 

of the PV generator one gets
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In Fig. 2 this model is shown as an equivalent 
circuit valid for the time interval tn < t < tn + Δt
(Δt is the time step). In any subsequent time 
interval one has to update the values of rdn, edn

through relations (2), (4) and (5).
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Fig. 2. Incremental model of a PV generator

2.2. Inverter model

The system employs a line-commutated single-
phase bridge inverter, Fig. 3. The valves are 
modeled as ideal switches. Three modes of 
conduction are considered i.e. none, two or 
three valves conducting. A four-dimensional 
state vector S is introduced which defines the 
mode of conduction in each time step. If some 
valve is conducting, the corresponding element 
of the vector is declared as ″1″, otherwise the 
element is declared as ″0″. The nine possible 
states are summarized in Table 1.
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Fig. 3. Line commutated single-phase bridge 
inverter

Table 1. Possible states of S

Valve No. State vector S
1 1 1 0 0 0 1 1 1 0
2 1 1 1 1 0 0 0 1 0
3 0 1 1 1 1 1 0 0 0
4 0 0 0 1 1 1 1 1 0

According to Table 1, commutation is included 
in the inverter model as it is shown at the 
second, fourth, sixth and eighth columns. The 
third and seventh columns do not correspond to 
real situations but they have been introduced for 
the necessity of the simulation. Finally, the 
ninth column presents a non-conducting situa-
tion, which appears in a non-continuous con-
duction operation of the inverter. The states of 
the vector S are a function of either only the 
system outputs or the system outputs and the 
commands of the control system.

2.3. Transformer model

For the representation of the transformer, the 

geometrical transformer model that is presented 
in [6] is used. This transformer model takes into 
account the magnetic core structure as well as 
the non-linearity of the core material. In parti-
cular, this model is based on the decoupling and 
the direct solution of the electric and magnetic 
circuits on the level of state equations.
Suppose the single-phase transformer shown in 
Fig. 4 where v1 and v2 are the voltages at the 
transformer terminals, i1 and i2 are the windings
currents, ψ1 and ψ2 the flux linkages, L1 and L2

are the leakage inductances, r1 and r2 are the 
windings resistances at the primary and the se-
condary side, respectively. In Fig. 5 the mag-
netic circuit of the transformer core is shown 
where Φ the core flux, F is the total magneto-
motive force due to the windings currents, Rm is 
the magnetic reluctance and fRm is the magnetic 
potential.

Fig. 4. A single-phase core-type transformer

Fig. 5. The magnetic circuit of the magnetic 
core of the transformer in Fig. 4

According to [6], the coupling between the 
transformer’s windings is represented by the 
incremental inductance matrix Ld. The matrix 
Ld is symmetrical, it’s diagonal elements 
represent the incremental self-inductances 
while the non-diagonal elements represent the 
incremental mutual-inductances of the win-
dings.
In order to determine the matrix Ld one has to 
derive the differential equation of the magnetic 
flux in terms of the time derivatives of the 
windings currents i1 and i2 (Fig. 4). To this end, 
the time derivative of the core flux is written as

Rm

Rm

fd dF

dt f F dt

 

 

(6)
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The time derivative of the magnetomotive force 
F is

1 2
1 2

di didF
N - N

dt dt dt
 (7)

Moreover, the partial derivative of the magnetic 
potential fRm with respect to the magnetomotive 
force F is
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F





(8)

In [6] it is proved that

md
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
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where Gmd = μdAc/Lc is the incremental magnet-
ic conductance, Ac is the cross section at the 
magnetic core and Lc is the mean length of the 
magnetic lines of the core. The term μd is the 
incremental magnetic permeability and is de-
fined as μd = db/dh where b is the magnetic flux 
density and h is the magnetic field strength of 
the core. By substituting (7), (8) and (9) into (6) 
the differential equation of the magnetic flux is 
written as

1 2
1 2-md md

di did
N G N G

dt dt dt


 (10)

The time derivatives ψ1 and ψ2 of the windings 
are written in terms of the time derivative of the 
magnetic flux Φ as
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By substituting (10) into (11) the matrix Ld is 
derived and the result is

2
1 1 2

2
1 2 2

md md

md md

N G -N N G
=

-N N G N G

 
 
 

dL (12)

The electrical equations of the transformer in 
Fig. 4 are derived using the incremental self and 
mutual inductances in (12) and in matrix form 
are
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The inclusion of the hysteresis loop of the core 
material is accomplished using the Jiles-

Atherton model. Specifically, using the funda-
mental equation

 0b h M   (14)

where μ0 is the permeability of the free space 
and M is the magnetization of the core, the 
incremental permeability μd is given by

0 1d
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The term dM/dh is the sum

rev irrdM dMdM

dh dh dh
  (16)

where Mrev is the reversible magnetization and 
Mirr is the irreversible magnetization. Accor-
ding to the Jiles-Atherton model
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where the term Man is the anhysteretic magneti-
zation, the parameters a1, a2, c and k are con-
stants for the material being used, Ms is the sa-
turation magnetization and the directional pa-
rameter δ is ± 1 and depends on the sign of dh.
In terms of h, Man is expressed by the modified 
Langevin equation
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The term dMan/dh in (18) can be derived by dif-
ferentiation of (19). 
In order to follow the trajectory of the core ma-
terial on the b-h plane, the quantities Mrev, Mirr

and h have to be calculated. Hence, besides (10) 
the following differential equations are also 
required

1

d c

dh d

dt A dt





(20)

rev revdM dM dh

dt dh dt
 (21)

irr irrdM dM dh

dt dh dt
 (22)

In this work, the typical hysteresis loop shown
in Fig. 6 for a Fe-Si material is used according 
to [7].
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Fig. 6. Hysteresis curve for Ms= 1.146 106 A/m,
α1 = 1.3 10-4, k = 99 A/m, α2 = 59 A/m and 
c = 0.55

3. System modeling

The above-mentioned models for the main 
components of the system are mathematically 
combined into a system model for the presenta-
tion of the state equations for the grid co-
nnected PV system shown in Fig. 7.
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Fig. 7. Grid connected PV system

For example, suppose that the inverter is at 
a conduction mode where valves ″1″ and ″2″
are closed and valves ″3″ and ″4″ are open as 
shown in Fig. 8. Then, the vector S = [1 1 0 0]. 
In this case, the state variables of the electrical 
part of the system are the loop current i1 at the 
primary side of the transformer, the loop cur-
rent i2 at the secondary side of the transformer 
and the voltage vc at the capacitor terminals.
Then, the equations of the electrical part of the 
system are
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Fig. 8. System topology for S = [ 1 1 0 0 ]

In the case where S = [1 1 1 0], which means 
that the valves ″1″ , ″2″ and ″3″ are closed an 
extra loop arises at the ac side of the inverter. 
This leads to a different set of state equations 
and the number of state variables is increased to 
five. Thus, it is obvious that nine sets of state 
equations are employed and according to the 
value of the state vector the proper set is se-
lected for integration in each time step.

4. Simulation results
Based on the proposed system model, simula-
tion studies have been conducted for the John F. 
Long PV System [1]. System performance for 
insolation 400 W/m2, 550 W/m2 and 1000W/m2

is shown in Fig. 9 and in Fig. 10, for the tran-
sient and the steady state, respectively, using 
the data shown in Table 2.

Table 2. Data for the simulation

ac Grid
Resistance [mΩ] 23.6
Inductance [mH] 0.12
Frequency [Hz] 60

RMS voltage [V] 240
Transformer

Windings
Resistance [mΩ] 85.601

Leakage inductance [μH] 307.155
Number of turns 160

Magnetic core
Mean length path [cm] 87.43

Cross-section [cm2] 70.383
Dc filter

Inductance [mH] 25
Capacitance [mF] 3.3

In Fig. 11 and in Fig. 12, the measured and the 
predicted values for the harmonic content of the 
injected current into the ac grid is shown for 
insolation 550 W/m2 and 400 W/m2, respective-
ly. Comparing these results, for instance, for the 
third harmonic, which dominates, the error bet-
ween the measured and predicted value is about 
15% (550 W/m2) and 8% (400 W/m2). Concer-
ning the Total Harmonic Distortion (THD), the 
error is 12.6% (550 W/m2) and 5.6% 
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(400 W/m2).

5. Conclusion

The mathematical description of the system 
model shows the way in which the proposed 
transformer model can be used for the modeling 
of grid connected PV, wind or fuel cell systems.
The basic concepts of simulation are the same 
regardless of the switching pattern of the con-
verter’s electronics valves (e.g. PWM). The 
predicted values, for the specific system, pre-
sent good agreement with the measured values 
and thus, the system model is a suitable tool for 
such studies. Moreover, the proposed system 
model can be used to sensitivity analysis on
various design parameters for improvements 
during the design stage.
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Fig. 9. Waveforms of the injected current into 
the ac grid for insolation 400 W/m2 (solid line), 
550 W/m2 (dashed line) and 1000 W/m2 (sort-
dashed line)
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Fig. 10. Waveforms of the injected current into 
the ac grid for insolation 400 W/m2 (solid line), 
550 W/m2 (dashed line) and 1000 W/m2 (sort-
dashed line)
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Fig. 11. Harmonic content of the injected cur-
rent for isolation 550 W/m2
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Fig. 12. Harmonic content of the injected cur-
rent for isolation 400 W/m2
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