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PARTIAL DISCHARGES OF THERMALLY AGED INSULATION 
 

CZĘŚCIOWE UWALNIANIE CIEPŁA W ZUśYTEJ IZOLACJI  
 

Abstract: The working life of electrical machines is primary affected by the insulation system quality. 
Diagnostics methods help to understand the momentary state of insulation and to avoid the possible damage or 
breakdown of machines. Partial discharge testing belongs to one of the high applicable test method of insulating 
materials within electrical machines. The described experiment consists of laboratory thermal aging of insulation 
and consequently testing of partial discharges. The flat specimens of insulation were used for the partial 
discharge behavior recognition. The conductive rubber electrodes were used to avoid the gliding discharges on 
the surface of specimen. The trends of partial discharge main parameters are studied and described.

1. Introduction 
The working life of electrical machines is 
primary affected by the insulation system 
quality. The working life of electrical insulating 
system is commonly determined, estimated and 
predicted in terms of accelerated laboratory 
aging of studied insulating materials. 
Accelerated aging could be applied as single 
factor aging like thermal or electrical aging or 
multiple factor aging exists. During the multiple 
factor aging all factors take effect together in 
the same time. Degradation of an insulation 
system occurs during the accelerated aging. The 
degradation is related to the physical and 
chemical changes within material structure. 
These changes are consequently detectable with 
physical or chemical test methods.  
Partial discharge testing belongs to one of the 
high applicable test method of insulating 
materials within electrical machines. This 
noninvasive or nondestructive test method 
allows determining the degradation ratio or 
homogeneity of insulation.  

2. Aging and specimen testing 
Investigated mica resin rich composite based on 
glass fabric and epoxy resin was thermally 
aged. The changes of its physical- and chemical 
properties were measured during accelerated 
aging. Partial discharges were measured as 
well. The characteristic values of partial 
discharges like ignition voltage (Ui), extinguish 
voltage (Ue), pulse count (N), average 
discharge current (NQS) and peak charge level 
(Q) were measured and analyzed. 

 
 

The preliminary and orientation lifetime curves 
of tested materials were performed first. This 
step was necessary to determine the aging 
temperatures and aging times for each 
temperature [1]. Two points build up the 
preliminary lifetime curve. First point is the 
maximal temperature second point is the 
minimal endurance temperature. Maximal 
endurance temperature is given by eight hours 
endurance test. Minimal endurance temperature 
is given by temperature class and by material 
producer who declared lifetime of material for 
30 years at this temperature. The eight hours 
maximal temperature was first determined 
according to the loss factor rapidly increased 
values comparing to the virgin state or 
according to the visual changes of specimen 
(deformations, delaminating, bending, 
deflection etc).Four aging temperatures were 
chosen for material accelerated aging (Table 1). 
The aging times were determined for each 
temperature. The aging times were determined 
in agreement with the preliminary lifetime 
curves [1]. The aging temperatures are chosen 
according to the experiment total duration as 
well. 

 

Table 1. Aging temperatures and aging times 

Aging 
temperature 
(°C) 

Aging times at given 
temperature (hours) 

170 192 288 384 480 600 
175 48 96 144   
180 8 16 24 32 48 
186 2 4 6 8 10 
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3. Partial discharges of flat specimens 
The broadband partial discharge test system 
Power Diagnostix was used for PRDP (phase 
resolved partial discharge characteristics) and 
other partial discharges magnitudes measuring. 
The test setup is given in figure 1. 

 
Fig. 1. Measuring  setup 
 

Specimens of tested material were performed 
and cured as flat plate 100×100 mm. The 
measuring of these specimens was carrying out 
by test voltage at the electrode test setup (figure 
2). The conductive rubber electrodes were used 
to suppress and to avoid   the gliding discharges 
at the surface of the specimen. The force impact 
the upper electrode is given thanks to the spring 
and the force is constant for each test. 

 
 
Fig. 2. Electrodes setup for flat specimen 

testing 

 
Measuring of partial discharges was performed 
at ten specimens aged at one temperature. The 
measuring voltage applied on upper electrode 
(figure 2) was 1,5 kV. This means that the 
gradient over average specimen thickness 0,45 
mm was 3,3 kV/mm.  

 

4. Results and Discussions 
Measured data at ten different specimens aged 
at one temperature shows relatively wide 
variance and variance coefficient as well. This 
is given by material character and by the 
stochastic principle of measured partial 
discharges firstly. Fig. 3 and Fig. 4 shows 
recorded phase resolved partial discharges 
characteristics for specimens aged at two 
extreme temperatures and times (170°C for 192 
hours (Fig.3) and 186°C for 8 hours (Fig.4)).   
The lower or less intensive partial discharges 
activity given by measured apparent charge 
values and “narrow” partial discharges phase 
resolved characteristics area is evident in figure 
4. The parameters NQS, Ui, Ue and pulse 
count N measured during accelerated 
temperature aging are presented in figures  
5-12.These parameters were measured as well 
for the better analysis and understanding of 
partial discharge behavior during temperature 
aging. The phase resolved characteristics at 
figures 3 and 4 are obtained for one minute 
record of partial discharges.  

 

 
Fig. 3. Phase resolved characteristics at  

170°C and 192 hours 

 

 
Fig. 4. Phase resolved characteristics at  

186°C and 8 hours 
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Fig. 5. Dependence of measured values on 

aging time at 170°C 
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Fig. 6. Dependence of pulse count on aging 

time at 170°C  
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Fig. 7. Dependence of measured values on 

aging time at 186°C 
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Fig. 8. Dependence of pulse count on aging 

time at 186°C 
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Fig. 9. Average current time chart for different 

aging temperatures 
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Fig. 10. Pulse count time chart for different 

aging  temperatures 
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Decrease of pulse count of partial discharges of 
material aged at one aging temperature over the 
time is recognizable in figure 10. Second, the 
significant increase of partial discharge pulse 
count occurs when the particular aging 
temperature is rising (see Fig. 10).  
Inception voltage doesn’t show any evident 
increasing or decreasing trend during aging at 
any temperature (see Fig. 11). The differences 
of this magnitude are obvious for particular 
aging temperatures (170°C – 186°C). Inception 
voltage value is the lowest for aging 
temperature 186°C (see Fig. 11). It means the 
lowest voltage is necessary to start the partial 
discharges of specimen aged at 186°C for that 
reason that the material is the most aged of all 
aging temperatures.  
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Fig. 11. Ignition voltage time chart for different 

aging  temperatures 
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Fig. 12. Extinguish voltage time chart for 

different aging  temperatures 

Extinguish voltage of measured partial 
discharges (see Fig. 12) doesn’t show any 
significant or universal trend depended on 
applied aging temperature. Otherwise, the 
extinguish voltage values have slowly 
increasing trend of magnitudes for each aging 
temperature over the aging time (Fig. 12). 

5. Conclusions 
Main parameters of partial discharges such as 
ignition voltage (Ui), extinguish voltage (Ue), 
pulse count (N), average discharge current 
(NQS) were measured and analyzed. This 
analysis was made for evaluation of insulation 
based on mica, glass fiber and epoxy resin 
degradation. Measured material was aged 
according to [1]. The flat specimens of material 
were prepared.   
Increasing of inception and extinguish voltage 
and decrease of pulse count is obvious from the 
data measured over the time at one aging 
temperature. 
Average discharge current doesn’t have any 
significant trend of increasing or decreasing of 
magnitudes over aging time. Measured data of 
this parameter have furthermore significant 
variance of values. This fact is given thanks to 
stochastic fundament of internal and gliding 
partial discharges.  
The partial discharges of whole setup are 
measured in the case of flat specimens during 
experiment. The internal and surface gliding 
discharges are detected and analyzed.  
The real insulated bar specimens which are 
wrapped with a tape would have any phase 
resolved characteristics. The bar is here fully 
wedged and all corona protections paintings and 
protections are present. The slot discharges, end 
bar gliding discharges and internal discharges in 
the insulation cavities occurs at this real setup. 
Recording the changes of partial discharges 
concerning the changes within material 
according to the aging temperature and aging 
time is applicable at described flat specimens 
testing as well.  
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