PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Deterministyczne i stochastyczne sformułowanie perturbacyjne zagadnień układów belkowych ze szczelinami

Autorzy
Identyfikatory
Warianty tytułu
EN
The deterministic and stochastic perturbation formulation of issues involving beam systems with slots
Języki publikacji
PL
Abstrakty
EN
The study concerns the beams with slots. The conditions of propagation of slots in bent beams are presented here, basing on the Griffith's proposed criterion of the released energy of distortion. There has been introduced a model of substitute joint of the section of slot affected beam, analysis of propagation of slot arrangement has been presented with the application of the adequate variation theorems. The spring issues as well as spring-plastic issues have been considered including the models of plastic zone in front of the top of the slot, as proposed by Irwin and Dugdale, quasi-static and dynamic questions have been discussed. A comparative analysis of the results based on the method proposed by this study has been conducted by use of finite element method (by means of commercial programmes MSC NASTRAN, ABAQUS, ANSYS) and the experimental research works. The substitute stiffness of the section of slot-affected beam has been determined by use of technical bending theory and cracking mechanics, the equivalence conditions of both models have been analysed. The experimental method has been proposed to determine this stiffness, verified for rectangular section steel beam. There is also presented perturbation stochastic formulation of own [specific] issue. All formulations have been conducted within systems with parameters defined both in the deterministic as well as the stochastic manner. In case of random systems a non-static methodology has been elaborated, basing on the linear analysis of the first two probabilistic moments of the values described in the perturbation form. The length and location of slots have been adopted as random variables. The results of the calculations such as the effect of the size and location of slots on the specific frequencies and forms, based on own programmes, have been presented in graphic form, in the two- and three-dimensional drawings.
Rocznik
Strony
3--118
Opis fizyczny
Bibliogr. 155 poz., rys., tab.
Twórcy
autor
  • Zakład Konstrukcji, Mechaniki i Technologii Okrętów, Politechnika Szczecińska
Bibliografia
  • 1. Adams R. D., Cawley P., Pye C., Stone B. J.: A vibration technique for non-destructively assessing the integrity of structures, Journal of Mechanical Engineering Sciences, 1978, Vol. 20, s. 93 - 100.
  • 2. Aliabadi M. H.: Boundary element formulations in fracture mechanics, Appl. Mech. Rev., 1997, Vol. 50, s. 83 - 96.
  • 3. Aliabadi M. H., Cartwrigth D. J.: Boundary element analysis of strip yield cracks, Eng. Anal. with Boundary Elements, 1991, Vol. 8, s. 9 - 12.
  • 4. Aliabadi M. H., Rooke D. P.: Numerical Fracture Mechanics, in: Comput. Mech. Publ., Southampton, Kluwer Akademic Publishers 1991.
  • 5. American Bureau of Shipping, Guide for Fatigue Strength Assessment of Tankers, New York 1992.
  • 6. Bahvalov N. S., Panačenko G. P.: Osrednenie processov v periodičeskich sredach, Moskva, Izd. Nauka 1984.
  • 7. Basista M., Nowacki W. K. (Eds.): Modeling of damage and fracture processes in engineering materials, Warszawa, IPPT PAN 2000.
  • 8. Bensoussan A., Lions K. L., Papanicolaou G.: Asymptotic analysis for periodic structures, Amsterdam, North-Hollnad Publ. Comp. 1978.
  • 9. Bilby B. A., Cottrell A. H., Swinden K. H.: The spread of plastic yield from a notch. Proceedings, Roy. Sac. A, 1963, Vol. 272, s. 304 - 310.
  • 10. Brebbia C. A.: Boundary Element Method in Engineering, Berlin, Springer 1982.
  • 11. Brock D.: Elementary engineering fracture mechanics, Leyden, Nordhoff International Publishers 1974.
  • 12. Broutman L. J., Krock R. H (eds.): Composite materials, Vol. 1 - 8, New York - London. Academic Press 1973 - 1976.
  • 13. Byskov E.: The calculation of stress intensity factors using finite element method with cracked elements, Int. J. Frac. Mech., 1970, Vol. 6, No. 2, s. 159 - 167.
  • 14. Cawley P., Adams R. D.: A vibration technique for nondestructive testing of fibre composite structures, Journal Composite Materials, 1979, Vol. 13, s. 161 - 175.
  • 15. Cawley P., Adams R. D.: Defect location in structures by a vibration technique, ASME Paper, 1979, No. 79-DET-46.
  • 16. Cawley P., Adams R. D.: The location of defects in structures from measurements of natural frequencies, Journal of Strain Analysis, 1979, Vol. 14, s. 49 - 57.
  • 17. Čerepanov G. P.: Mehanika hrupkovo razrušeniâ, Moskva, Izd. Nauka 1974.
  • 18. Čerepanov G. P.: Mehanika kompozicionnyh materialov, Moskva, Izd. Nauka 1983.
  • 19. Chang J. H., Pu L. P.: Finite element calculation of energy release rate prior to crack kinking in 2-D solids, Int. J. Numer. Methods Ing., 1996, Vol. 39, s. 3033 - 3046.
  • 20. Collins J. D., Thomson W. T.: The eigenvalue problem for structural systems with statistical properties, J. AIAA, 1969, Vol. 7, No. 4, s. 642 - 648.
  • 21. Cruse T. A., Polch E. Z.: Application of an elastoplastic boundary element method to some fracture mechanics problems, Eng. Fract. Mech., 1986, Vol. 23, s. 1085 - 1096.
  • 22. Dems K., Mroz Z.: Variational approach by means of adjoint systems to structural optimization and sensitivity analysis. I. Variation of material parameters within a fixes domain, Int. J. Solids Struct., 1983, Vol. 19, s. 677 - 692.
  • 23. Der Kiureghian A., Jyh-Bin Ke: The stochastic finite element method in structural reliability, Probab. Engrg. Mech., 1988, Vol. 3, No. 2, s. 83 - 91.
  • 24. Der Kiureghian A„ Liu P.-L: First- and second-order finite element reliability methods in structural reliability, in: Computational Mechanics of Probabilistic and Reliability Analysis, eds. W. K. Liu, T. Belytschko, New York, Elmepress Int. 1989, s. 281 - 298.
  • 25. Det Norske Veritas Classification Fatigue Assessment of Ship Structures, Notes Nr 30.7, Hovik 1998.
  • 26. Det Norske Veritas Classification Fatigue Strength Analusis for Mobile Offshorc Units, Note Nr 30.2, Oslo 1993.
  • 27. Dimarogonas A. D.: Modelling damaged structural member for vibration analysis, J.. Sound Vib., 1987, Vol. 112, s. 541 - 543.
  • 28. Dominguez J., Boundary Elements in Dynamics, Southampton, Comput. Mech. Publ. 1993.
  • 29. Drewko J.: Analiza quasi-statycznej propagacji układu szczelin w płaskich elementach konstrukcji okrętowych, praca doktorska, prace badawcze Nr 2150/MR-1070/85, Gdańsk 1985.
  • 30. Drewko J.: Elastic hinge modeling in vibration analysis of beams with cross-sections weakened by cracks. Marine Tech. Trans., 1999, Vol. 10, s. 93 - 103.
  • 31. Drewko J.: Modele przegubów sprężysto-plastycznych w drganiach belek ze szczelinami, Zeszyty Naukowe Katedry Mechaniki Stosowanej Politechniki Śląskiej, 2000, nr 14, s. 33 - 38.
  • 32. Drewko J.: Obliczanie przemieszczeń i naprężeń w tarczy Z układem szczelin, zlecenie MNSzWiT, Gdańsk 1984.
  • 33. Drewko J.: Obliczenia porównawcze wytrzymałości zmęczeniowej kadłubów statków wg projektu przepisów PRS i przepisów DnV, Zakład Konstrukcji i Mechaniki Okrętów PS. Nr 6-R, Szczecin 1999.
  • 34. Drewko J.: On the models of elastic-plastic joints in statics and dynamics of beams with cracks, Marine Tech. Trans., 2002, Vol. 13, s. 53 - 67.
  • 35. Drewko J.: Plastic zones in modeling the cracked cross-section of beam. Nauki Techniczne —Budownictwo, Zeszyty Naukowe Politechniki Świętokrzyskiej, 2007, nr 6, s. 109 - 120.
  • 36. Drewko J.: Quasi-statyczna analiza propagacji układu szczelin w belkach zginanych. Marine Tech. Trans., 1997, Vol. 8, s. 65 - 86.
  • 37. Drewko J.: Vibration analysis of beams with cracks, Visnyk Lviv Univ., Ser. Mech. Math.. 1999, No. 55, s. 30 - 34.
  • 38. Drewko J.: Zastosowanie metody elementów skończonych w analizie guasi-statycznej propagacji szczelin w płaskich elementach konstrukcyjnych, zlecenie MNSzWiT, Gdańsk 1983.
  • 39. Drewko J., Hien T. D.: A stochastic eigenproblem of beams with cracked cross-sections, Theor. Appl. Mech., 2002, Vol. 40, No. 4, s. 986 - 1001.
  • 40. Drewko J., Hien T. D.: A stochastic formulation for eigenproblems in fracture mechanics, Marine Tech. Trans., 2002, Vol. 13, s. 69 - 88.
  • 41. Drewko J., Hien T. D.: First- and second-order sensitivities of beams with respect to cross-sections cracks, AAM, 2005, Vol. 14, s. 309 - 324.
  • 42. Drewko J, Sperski M: Vibration of multi-chamber shell structures with discontinuously variable cross-sections, Eng Trans., 1991, Vol. 39, s. 163 - 180.
  • 43. Erdogan F.: Fracture problems in composite materials, Engng. Fract. Mech., 1972, Vol. 4, s. 811 - 840.
  • 44. Erdogan F.: Stress distribution in a non-homogeneous elastic plane with cracks. Trans. ASME, J. Appl. Mech., 1963, Vol. 30, s. 232 - 236.
  • 45. Erdogan F., Sih G. C.: On the crack extension of plates under plane loading and transverse shear. Trans. ASME, J. Basic Eng., 1963, Vol. 85, s. 519 - 527.
  • 46. Fedeliński P.: Metoda elementów brzegowych w analizie dynamicznej układów odkształcalnych z pęknięciami. Zeszyty Naukowe Politechniki Śląskiej, Ser. Mech., 2000, Z. 137.
  • 47. Fox R. L., Kapoor M. P.: Rate of change of eigenvalues and eigenvectors, J. AIAA, 1968, Vol. 12, No. 6, s. 2426 - 2429.
  • 48. Frank P. M.: Introduction to System Sensitivity Theory, London, Academic Press 1978.
  • 49. Fujii T., Zako M.: Mehanika razrušeniâ kompozicionnyh materialov Moskva, Izd. Mir 1982.
  • 50. Germanischer Lloyd, Rules for Classification and Construction-Hull Structure, Hamburg 1992.
  • 51. Ghanam Roger G., Spanos Pol D.: Static Finite Elements, A Spectral Approach, New York, Springer-Verlag 1991.
  • 52. Gounaris G., Dimarogonas A. D., A finite element with a cracked prismatic beam for structural analysis, Comput. & Struct., 1988, Vol. 28, s. 309 - 313.
  • 53. Griffith A. A.: The phenomena of rupture and flowing solids, Philos. Trans. Roy. Soc., 1921, Vol. A221, s. 163 - 198.
  • 54. Haftka R. T., Mroz Z.: First- and second-order sensitivity analysis of linear and nonlinear structures. J. AIAA, 1986, Vol. 24, s. 1187 - 1192.
  • 55. Hajela P., Soeiro F. J.: Structural damage detection based on static and modal analysis. J. AIAA, 1990, Vol. 28, s. 333 - 350.
  • 56. Haug G. J., Choi K. K., Komkov V.: Design Sensitivity Analysis of Structural Systems, Series in Math. Sci. Eng., London, Academic Press 1986.
  • 57. Hayashi K., Nemat-Nasser S., Energy release rate and crack kinking under combined loading, Trans. ASME, J. Appl. Mech., 1981, Vol. 48, s. 520 - 524.
  • 58. He M. Y., Hutchinson J. W.: Asymmetric four-point crack specimen, ASME Journal of Applied Mechanics, 2000, Vol. 67, s. 207 - 209.
  • 59. Hearn G., Testa R. B.: Modal analysis for damage detection in structures, ASCE, Journal of Structural Engineering, 1991, Vol. 117, s. 3042 - 3063.
  • 60. Hien T. D.: Numerical analysis of stochastic systems, Technical University of Szczecin, Szczecin 2003.
  • 61. Hien T. D., Drewko J.: Parameter perturbations in fracture mechanics, Part I: Deterministic sensitivity of eigenvalues, Part II: A stochastic eigenproblem, w: Polioptymalizacja i komputerowe wspomaganie projektowania, red. W. Tarnowski i T. Kiczkowiak, Warszawa, WNT 2004, s. 61 - 76.
  • 62. Hien T. D., Kleiber M.: Computational aspects in structural design sensitivity analysis for statics and dynamics, Comput Struct., 1989, Vol. 33, s. 939 - 950.
  • 63. Hien T. D., Kleiber M.: Finite element analysis based on stochastic Hamilton variational principle, Comput. & Structures, 1990, Vol. 37, No. 6, s. 893 - 902.
  • 64. Hien T. D., Kleiber M.: On solving nonlinear heat transient heat transfer problems with random parameters, Comput. Meth. Appl. Mech. Engrg., 1998, Vol. 151, s. 287 - 299.
  • 65. Hien T. D., Kleiber M.: Stochastic finite element modelling in linear transient heat transfer, Comput. Meth. Appl. Mech. Engrg., 1997, Vol. 144, s. 111 - 124.
  • 66. Hildebrand F. B.: Introduction to Numerical Analysis, London, McGraw-Hill 1956.
  • 67. Hisade T., Nakagiri S.: Stochastic finite element method developed for structural safety and reliability, in: Proc. 3rd Int. Conf. On Struct. Safety and Reliability, New York, John Wiley 1981, s. 395 - 402.
  • 68. Huber M. T.: Stereomechanika techniczna. Warszawa, PWN 1958.
  • 69. Hussain M. A., Pu S. L., Underwood J.: Strain energy release rate for a crack under combined Model and -II, ASTM STP, 1974, No. 560, s. 2 - 28.
  • 70. Irwin G. R.: Analysis of stresses and strain near the end of a crack traversing a plate. Trans. ASME, J. Appl. Mech., 1957, Vol. 24, s. 361 - 364.
  • 71. Irwin G. R.: Fracture, Handbuch der Phisik, VI, Berlin, Springer-Verlag 1958.
  • 72. Jia Z. H., Shippy D. J., Pizzo F. J.: Computation of two dimensional stress intensity factors using the boundary element method, Int. J. Num. Meth. Eng., 1988, Vol. 26, s. 2739 - 2753.
  • 73. Ju F. D., Mimovich M. E.: Experimental diagnosis of fracture damage in structures by the modal frequency method, ASME, Journal of Vibration, Acoustics, Stress, and Reliability in Design, 1988, Vol. 110, s. 456 - 463.
  • 74. Kaczyński A.: Zagadnienia szczelin międzyfazowych w mikroperiodycznych kompozytach termosprężystych, Prace Naukowe Politechniki Warszawskiej, Budownictwo, 1995, z. 217.
  • 75. Kaczyński A., Matysiak S. J.: On the stress distribution in a periodic reinforced elastic composite with partially unbonded fiber, Engng. Fract. Mech., 1991, Vol. 39, s. 561 - 567.
  • 76. Kamin’skij A. A.: Mehanika razrušeniâ vâzko uprugih lei, Kiev, Nauka Dumka 1980.
  • 77. Kleiber M., Hien T. D.: Parameter sensitivity of inelastic buckling and post-buckling response, Comput. Meth. Appl. Mech. Engrg., 1997, Vol. 145, s. 239 - 262.
  • 78. Kleiber M., Hien T. D.: The Stochastic Finite Element Method, New York, Wiley 1992.
  • 79. Knott J. F.: Fundamentals of Fracture Mechanics, London, Butterworth 1976.
  • 80. Kobayashi A. S.: Photoelastic studies of fracture, in: Fracture, ed. H. Liebowitz, Vol. 3, New York—London, Academic Press 1971.
  • 81. Kocańda S., Szala J.: Podstawy obliczeń zmęczeniowych. Warszawa, Wydawnictwo Naukowe PWN 1997.
  • 82. Krawczuk M.: Finite Timoshenko-type beam element with a crack, Engineering Transactions, 1992, Vol. 40, s. 229 - 248.
  • 83. Krawczuk M., Żak A., Ostachowicz W.: Elastic beam finite element with a transverse elasto-plastic crack, Finite Elements in Analysis and Design, 2000, Vol. 34, s. 61 - 73.
  • 84. Kujath M. R.: Detection of sudden changes of modal parameters in machinery, in: Proceedings of the 6th International Modal Analysis Conference, 2, Kissimmee, USA, 1988, s. 1253 - 1259.
  • 85. Lawrence M. A.: Basic random variables in finite element analysis, Int. J. Num. Meth. Eng., 1987, Vol. 24, s. 1849 - 1863.
  • 86. Liebowitz H., (Ed.): Fracture. An Advanced Treatise, Vol. 1-7, New York, Academic Press 1968-72.
  • 87. Liu P. L., Der Kiureghian A.: Multivariate distribution models with prescribed marginals and covariances, Probab. Engng. Mech., 1986, Vol. 1, No. 2, s. 105 - 112.
  • 88. Liu W., K., Belytschko T., Mani A.: Random field finite elements, Int. J. Numer. Methods Engn. 1986, Vol. 23, s. 1831 - 1845.
  • 89. Love A. E. H.: Mathematical Theory of Elasticity, wyd. IV, Cambridge 1927.
  • 90. Łukasiewicz S., Pałka K.: Least square method for detection of defects in structures from dynamic responses, Arch. Budowy Maszyn , 1997, Vol. XLIV, s. 225 - 263.
  • 91. Matysiak S. J., Jewtushenko A., On approximate solutions of temperature and thermal stresses in an elastic semi-space due to laser heating, Numerical Heat Transfer, Part A, 2005, Vol. 47, s. 899 - 915.
  • 92. McClintock F. A.: Ductile fracture instability in shear, Trans. ASME, J. Appl. Mech., 1958, Vol. 25, s. 582 - 588.
  • 93. Molski K. L.: Zastosowanie jednostkowej funkcji wagowej w wymiarowaniu konstrukcji metodami mechaniki pękania. Warszawa, Oficyna Wyd. Politechniki Warszawskiej 2000.
  • 94. Morjari M., Mukerjee S.: Numerical analysis of planar tip dependent inelastic deformation of plates with cracks by the boundary element method, Int. J. Solids Struct., 1981, Vol. 17, s. 127 - 143.
  • 95. Mróz Z., Seweryn A.: Non-local failure and damage evolution rule: Application to a dilatant crack model, J. de Physiąue IV France, 1998, Vol. 8, s. 257 - 268.
  • 96. MSC/NASTRAN, Reference manual, version 68 (updated to v70), 1994.
  • 97. Muskhelisvili I. I.: Nekotorye osnovnoe zadači matematičeskoj teorii uprugosti, Moskva, AN SSSR 1949.
  • 98. Neimitz A.: Mechanika pękania. Warszawa, PWN 1998.
  • 99. Nelson R. B.: Simplified calculation of eigenvector derivatives, AIAA, 1976, Vol. 14, No. 9, s. 1201 - 1205.
  • 100. Neuber H.: Kerbspannungslehre, Grundlagen fur genaue Spannungsrechnung, Berlin, Springer 1937.
  • 101. Novožilov V. V.: O neobhodimom o dostatočnom kriterii hrupkoj pročnosti, Prikl. Mat. Mech., 1969, Vol. 33, s. 212 - 222.
  • 102. Nowacki W.: Dynamika budowli, Warszawa, Arkady 1972.
  • 103. Ostachowicz W., Krawczuk M.: Vibration analysis of a cracked beam, Computers and Structures, 1990, Vol. 36, s. 245 - 250.
  • 104. Ostachowicz W., Krawczuk M.: Vibration analysis of cracked turbin and compressor blades, 1990, ASME, paper 90-GT-5.
  • 105. Palaniswamy K., Knauss E. G.: Propagation of a crack under general in-plane tension, Int. J. Fract. Mech., 1972, No. 8, s. 114 - 117.
  • 106. Panasûk V. V.: Mehanika kvazihrupkogo razrušeniâ materialov, Kiev, Nauk. Dumka 1991.
  • 107. Panasûk V. V.: Predelnoe ravnovesie hrupkich tel s treŝinami, Kiev, Nauk. Dumka 1968.
  • 108. Paris P., Erdogan F.: A critical analysis of crack propagation laws, Trans. ASME, J. Basic Eng., 1963, Vol. 85, No. 4, s. 528 - 534.
  • 109. Polski Rejestr Statków — Przepisy, Analiza wytrzymałości zmęczeniowej stalowego kadłuba statku, publikacja Nr 45/P, Gdańsk 1990.
  • 110. Rice J. R.: Mathematical analysis in the mechanics of fracture, in: Fracture, ed. H., Liebowitz, Vol. 2, New York—London, Academic Press 1968.
  • 111. Richardson M., Mannan M. A.: Detection and location of structural cracks using FRF measurements, in: Proceedings of the 8th International Modal Analysis Conference, 1, Kissimee, USA, 1990, s. 187 - 192.
  • 112. Ritchie R. O., Knott J. F., Rice J. R.: On the relation between critical tensile stress and fracture tougness in mild steel, J. Mech. Phys. Solids, 1973, Vol. 21, s. 395 - 410.
  • 113. Rizos P. F., Aspragathos N., Dimarogonas A. D.: Identification of crack location and magnitude in a cantilever beam from the vibration modes, Journal of Sound and Vibration, 1990, Vol. 138, s. 381 - 388.
  • 114. Rizzo F. J.: An integral equation approach to boundary values problems of classical elastostatics, Quart. Appl. Math., 1967, Vol. 25, s. 83 - 95.
  • 115. Robinson J.: Integrated Theory of Finite Element Methods, London, Wiley 1973.
  • 116. Rosochowicz K.: Problemy pękania zmęczeniowego kadłubów statków, Gdańsk, Okrętownictwo i Żegluga sp. z o.o. 2000.
  • 117. Sanchez-Palencia E.: Non-homogeneous media and vibration theory, Berlin—Heidelgerg—New York, Springer-Verlag 1980.
  • 118. Seweryn A.: A non-local stress and strain energy release rate mixed mode fracture initiation and propagation criteria, Eng. Fract. Mech., 1998, Vol. 59, s. 737 - 760.
  • 119. Seweryn A.: Metody numeryczne w mechanice pękania, Warszawa, IPPT PAN 2003.
  • 120. Seweryn A. (red.): Modelowanie zagadnień kumulacji uszkodzeń i pękania w złożonych stanach obciążeń, Białystok, Politechnika Białostocka 2004.
  • 121. Shen M.-H., Pierre C.: Natural modes of Bernoulli-Euler beams with symmetric cracks, Journal of Sound and Vibratin, 1990, Vol. 138, No. 1, s. 115 - 134.
  • 122. Shinozuka M.: Monte Carlo Solution of structural Dynamics, Computer and Structures, 1972, Vol. 2, s. 855 - 874.
  • 123. Sih G. C.: Handbook of Stress Intensity Factors, Inst. of Fracture and Solid Mechanics, Lehigh University 1973.
  • 124. Sih G. C.: Methods of Analysis and Solutions of Crack Problems, Leyden, The Netherlands, Noordhoff International Publishing 1973.
  • 125. Sih G. C.: Strain-energy-density factor applied to mixed mode crack problems, Int. J. Fract., 1974, Vol. 10, s. 305 - 321.
  • 126. Sih G. C., Chen E. P.: Cracks in composite materials. A compilation of stress solutions for composite system with cracks, in: Mechanics of fractures, eds, G. C. Sih, Vol. 6, Dordrecht—Boston—London, Kluwer Acad. Publisher 1981.
  • 127. Sih G. C., Skudra A. M. (eds.): Failure mechanics of composites, in: Handbook of composites, Vol. 3, North-Holland, Amsterdam, Elsevier Science Publ. 1985.
  • 128. Sih G. S., Liebowitz H.: Mathematical Theories of Brittle Fracture, vol. 2, New York, Acad. Press 1968.
  • 129. Smith R. N. L.: Solution of mixed-mode fracture problems using the boundary element method, Eng. Anal. with Boundary Elements, 1988, Vol. 5, s. 75 - 80.
  • 130. Sneddon I. N.: The distribution of stress in the neighbourhood of a crack in an elastic solid. Proc. Royal Soc. A187, London 1946, s. 229 - 260.
  • 131. Sobczyk K., Spencer B. F., Jr.: Stochastyczne modele zmęczenia materiałów. Warszawa, WNT 1996.
  • 132. Solecki R., Szymkiewicz J.: Układy prętowe i powierzchniowe, obliczenia dynamiczne. Warszawa, Arkady 1964.
  • 133. Springer W. T., Lawrence K. L., Lawley T. J.: Damage assessment based on the structural frequency response function, Journal of Experimental Mechanics, 1988, Vol. 28, s. 34 - 37.
  • 134. Tada H., Paris P. C., Irwin G. R.: The Stress Analysis of Cracks Handbook, Hellertown, Pensylvania. Del Research Corporation 1973.
  • 135. Telega J., Lewiński T.: Homogenization and effective properties of plates weakened by partially penetreated fissures: asymptotic analysis, Int. J. Engng Sci., 1991, Vol. 29. s. 1129 - 1155.
  • 136. Timošenko S. P.: Teoriâ kolebanij w inžynernom dele, Moskva, Nauk. Dumka 1932.
  • 137. Timoshenko S.: Strength of Materials, Part I. II, Toronto, D.Van Nostrad 1950.
  • 138. Vanmarcke E. H., Grigoriu M.: Stochastic finite element analysis of simple beams, J. Eng. Mech. ASCE, 1983, Vol. 109, No. 5, s. 1203 - 1214.
  • 139. Wang L., Brust W., Atluri N.: The elastic-plastic finite element alternating method (EPFEAM) and the prediction of fracture und WFD conditions aircraft structures, Computational Mechanics. 1997, Vol. 19, s. 356 - 379.
  • 140. Wang T. C.: Fracture criteria for combined mode cracks, Sci. Sin., 1978, Vol. 21, s. 457 - 474.
  • 141. Wells A. A.: Critical tip opening displacement as fracture criterion, in: Proc. Crack Propagation Symp., Vol. 1, Cranfiels 1961, s. 210 - 221.
  • 142. Westergard H. M.: Bearing pressures and cracks, J. Appl. Mech., 1939, Vol. 6, s. 49 - 53.
  • 143. Williams M. L.: On the stress distribution at the base of a stationary crack, J. Appl. Mech., 1957, Vol. 24, No. 1, s. 109 - 114.
  • 144. Williams M. L.: Stress singularities resulting from various boundary conditions in angular corners of plates in extension, Trans. ASME, J. Appl. Mech., 1952, Vol. 19, s. 526 - 528.
  • 145. Wnuk M. P.: Podstawy mechaniki pękania, skrypt uczelniany, Nr 585, Kraków, AGH 1977.
  • 146. Woźniak C.: A nonstandard method of modeling of thermoelastic periodic composites, Int. J. Engng Sci., 1987, Vol. 25, s. 483 - 499.
  • 147. Woźniak C.: Homogenized thermoelasticity with microlacal parameters, Bull. Pol. Ac. Tech., 1987, Vol. 35, s. 133 - 142.
  • 148. Woźniak C.: Nonstandard analysis and microlocal effects in the multiayered bodies, Bull. Pol. Ac, Tech., 1986, Vol. 34, s. 385 - 392.
  • 149. Woźniak C.: On the linearized problems of thermoelasticity with microlocal parameters, Bull. Pol. Ac. Tech., 1987, Vol. 53, s. 143 - 152.
  • 150. Wu E. M.: Application of fracture mechanics to anisotropic plates. Trans. ASME, J. Appl. Mech., 1967, Vol. 34, s. 967 - 974.
  • 151. Wu E. M.: Strength and fracture of composites, in: eds. L. J. Broutman, R. H. Krock, Composite materials, Vol. 1 - 8, New York—London, Academic Press 1974, s. 191 - 247.
  • 152. Yoffe E. H.: The moving Griffith crack, Philos. Mag., 1951, Vol. 330, No. 42, s. 739 - 750.
  • 153. Yuen M. M. F.: A numerical study of the eigenparameters of damaged cant I lever beam, Journal of Sound and Vibration, 1985, Vol. 103, s. 301 - 310.
  • 154. Zienkiewicz O. C.: Metoda elementów skończonych. Warszawa, Arkady 1972.
  • 155. Zorski H.: Theory of discrete defects, Arch. Mech. Stos., 1966, Vol. 18, s. 301 - 372.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0050-0044
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.