PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Epoksydacja związków allilowych nadtlenkiem wodoru w obecności katalizatorów tytanowo-silikalitowych

Autorzy
Identyfikatory
Warianty tytułu
EN
Epoxidation of allylic compounds with hydrogen peroxide over titanium silicalite catalysts
Języki publikacji
PL
Abstrakty
EN
The results for epoxidation of allylic compounds: allyl alcohol, methallyl alcohol, methallyl chloride, 2-buten-1-ol and 1-buten-3-ol with 30% hydrogen peroxide were presented. The epoxidations were performed over earlier obtained titanium silicalite catalysts: microporous (TS-1, TS-2 and Ti-Beta) and mesoporous (Ti-MCM-41 and Ti-MCM-48). There were applied two methods of epoxidation: at increased pressure (autogenic pressure) in autoclave and at atmospheric pressure in glass reactor. At the beginning for each compound there were performed preliminary investigations. It was done by experimental investigations of the influence of each independent factor (parameter) on the course of the process at constant values remaining independent factors. The influence of the following technological parameters was investigated: temperature, the molar ratio allylic compound/hydrogen peroxide, methanol concentration (solvent), catalyst concentration and the reaction time. On the basis of these investigations the best technological parameters of epoxidation for each allylic compound not only at autogenic, but also at atmospheric pressure were established. These results were generalized and the general dependences for epoxidation of allylic compounds over titanium silicalite catalysts were presented. Than the correction of preliminary established ranges of process parameters for selected allylic compounds was made and next there were performed for them the optimizations with help of mathematical method of experimental planning (rotatable-uniform design). The established optimal parameters were close to the best parameters obtained in preliminary investigations, but the best parameters of the process usually allowed to carry out the process in milder conditions at the same or close values functions describing the process. The comparison between the methods at atmospheric pressure and autogenic pressure showed a lot of similarities in course of both processes - the similarity in values not only the best parameters but also the functions describing the process. Although the pressure method allowed to perform the process in broader range of temperature and pressure, the method at atmospheric pressure was chosen as the best. The method needs lower capital spending connected with performing of the process. At the end of this work there was proposed the simplified technological scheme of epoxides production, it took also into consideration the stage of products separation and regeneration of catalyst.
Twórcy
  • Instytut Technologii Chemicznej Organicznej Politechniki Szczecińskiej
Bibliografia
  • 1. Chiker F., Launay F., Nogier J. P., Bonardet J. L., Green and selective epoxidation of alkenes catalysed by new TiO2-SiO2 SBA mesoporous solids, Green Chem. 2000, vol. 5, s. 318—322.
  • 2. Palombi L., Scettri A., Barrella A., Proto A., Epoxidation and oxidation of alcohols. A new procedure using the methyalumoxane/tert-butyl hydroperoxide system, Green Chem. 1999, vol. 2, s. 27 - 29.
  • 3. Grigoropoulou G., Clark J. H., Elings J. A., Recent developments on the epoxidation of alkenes using hydrogen peroxide as an oxidant, Green Chem. 2003, vol. 5, s. 1 - 7.
  • 4. Burczyk B., Zielona chemia. Zarys, Wrocław, Oficyna Wydawnicza Politechniki Wrocławskiej 2006.
  • 5. Misja chemii, praca pod redakcją Bogdana Marcińca, Poznań, Wydawnictwo Poznańskie 2004.
  • 6. Wróblewska A., Milchert E., Aktualne i perspektywiczne zastosowania katalizatorów tytanowo-silikalitowych, Przem. Chem. 2005, vol. 84, nr 12, s. 2 - 5.
  • 7. Wróblewska A., Milchert E., Titanium silicalite catalysts in low waste technologies, Poi. J. Chem. Tech. 2004, vol. 3, no. 6, s. 1 - 4.
  • 8. Notari B., Microporous crystalline titanium silicates, Adv. Catal. 1996, vol. 41, s. 253 - 334.
  • 9. Saxton R. J., Crystalline microporous titanium silicates. Top. Catal. 1999, vol. 9, s. 43 - 57.
  • 10. Wróblewska A., Milchert E., Charakterystyka i zastosowania katalizatorów tytanowo-silikalitowych, Przem. Chem. 2005, vol. 84, nr 9, s. 2 - 7.
  • 11. Mandache I., Parvulescu V. I., Popescu A., Parvulescu L., Banciu M. D., Amoros P., Beltran D., Trong On D., Kaliaguine S., Epoxidation of dibenzocycloalkenes on Ti-Ge-MCM-41 and Ti-SBA-15 catalysts, Micropor. Mesopor. Mat. 2005, vol. 81, s. 115 - 124.
  • 12. Hoft E., Kosslick H., Fricke R., Hamann H.-J., Titanium containing molecular sieves as catalysts for selective oxidation reactions with hydrogen peroxide, J. Prakt. Chem. 1996, vol. 338, s. 1 - 15.
  • 13. Fan W., Wu P., Namba S., Tatsumi T., Synthesis and catalytic properties of a new titanosilicate molecular sieve with the structure analogous to MWW-type lamellar precursor, J. Catal. 2006, vol. 243, s. 183 - 191.
  • 14. Wróblewska A., Milchert E., Synthesis of titanium-silicalite catalysts, Pol. J. Appl. Chem. 2002, vol. XLVI, no. 3 - 4, s. 151 - 175.
  • 15. Wróblewska A., Milchert E., Ławro E, Związki amoniowe jako czynniki klatratujące w syntezie katalizatorów tytanowo-silikalitowych, w: Czwartorzędowe sole amoniowe. Monografia pod redakcją Ryszarda Zielińskiego, Poznań, Wydawnictwo Instytutu Technologii Drewna 2005, s. 518 - 524.
  • 16. Rzepkowska M., Wróblewska A., Milchert E., Wodorotlenek tetraetyloamoniowy w syntezach katalizatora Ti-Beta, w: Czwartorzędowe sole amoniowe. Monografia pod redakcją Ryszarda Zielińskiego, Poznań, Wydawnictwo Instytutu Technologii Drewna 2005, s. 506 - 511.
  • 17. Wróblewska A., Synteza katalizatora Ti-MCM-41 w oparciu o bromek heksadecylotrimetyloamoniowy i zastosowania w epoksydacji alkoholu allilowego, w: Czwartorzędowe sole amoniowe. Monografia pod redakcją Ryszarda Zielińskiego, Poznań, Wydawnictwo Instytutu Technologii Drewna 2005, s. 512 - 517.
  • 18. Wróblewska A., Milchert E„ Synthesis and properties of titanium silicalite catalysts prepared in the presence of hexaalkyl-l,6-hexanediammonium hydroxides and bromides, Oxid. Commun. 2001, vol. 24, no. 4, s. 533 - 546.
  • 19. Lok B. M., Cannan T. R., Messina C. A., The role of organic molecules in molecular sieve synthesis, Zeolites 1983, vol. 3, s. 282 - 291.
  • 20. Gies H., Marler B., The structure — controlling role of organic templates for the synthesis of porosils in the system SiO2/template/H2O, Zeolites 1992, vol. 12, s. 42 - 49.
  • 21. Wróblewska A., Ti-MCM-41 catalyst in environmentally friendly technologies. Pol. J. Chem. Tech. 2004, vol. 3, no. 6, s. 1 - 3.
  • 22. Wróblewska A., Milchert E., Synthesis of Ti-MCM-48 catalyst, in: Annals of the Polish Chemical Society, vol. II, Preliminary reports during XLVIII Annual Meeting of the Polish Chemical Society and the Association of Engineers & Technicians of Chemical Industry, Poznań, Poland, September 18 - 22 2005, s. 443 - 447.
  • 23. Taramasso M., Perego G., Notari B., Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides. Patent USA 4 410 501, 1983.
  • 24. Kokotailo G. T., Lawton S. L., Olson D. H., Meier W. M., Structure of synthetic zeolite ZSM-5, Nature 1978, vol. 272, s. 437 - 438.
  • 25. Flanigen E. M., Bennett J. M., Grose R. W., Cohen J. P., Patton R. L., Kirchner R. M., Smith J. V., Silicalite, a new hydrophobic crystalline silica molecular sieve, Nature 1978, vol. 271, s. 512 - 516.
  • 26. Notari B., Titanium silicalites, Catal. Today 1993, vol. 18, s. 163 - 172.
  • 27. Huybrechts D. R. C., Buskens P. L., Jacobs P. A., Physicochemical and catalytic properties of titanium silicalites, J. Mol. Catal. 1992, vol. 71, s. 129 - 147.
  • 28. Tuel A., Ben Taarit Y., Variable temperature 29Si MAS NMR studies of titanosilicalite TS-1. J. Chem. Soc, Chem. Commun. 1992, s. 1578 - 1580.
  • 29. Van der Pol A. J. H. P., Verduyn A. J., Hoff J. H. C., Why are some titanium silicalite-1 samples active and other not?. Appl. Catal. A: General 1992, vol. 92, s. 113 - 130.
  • 30. Perego G., Bellussi G., Corno C., Taramasso M., Buonomo F., Esposito A., Titanium-silicalite: a novel derivative in the pentasil family, Stud. Surf. Scien. Catal. 1986, vol. 28, s. 129 - 136.
  • 31. Bengoa J. F., Gallegos N. G., Marchetti S. G., Alvarez A. M., Cagnoli M. V., Yeramian A. A., Influence of TS-1 structural properties and operation conditions on benzene catalytic oxidation with H2O2, Micropor. Mesopor. Mat. 1998, vol. 24, s. 163 - 172.
  • 32. Thangaraj A., Kumar R., Ratnasamy P., Direct catalytic hydroxylation of benzene with hydrogen peroxide over titanium-silicate zeolites, Appl. Catal. 1990, vol. 57, s. L1 - L3.
  • 33. Thangaraj A., Kumar R., Mirajkar S. P., Ratnasamy P., Catalystic properties of crystalline titanium silicalites. Synthesis and characterization of titanium-rich zeolites with MFI structure, J. Catal. 1991, vol. 130, s. 1 - 8.
  • 34. Thangaraj A., Sivasanker S., An improved method for TS-1 synthesis: 29Si NMR studies, J. Chem. Soc., Chem. Commun. 1992, s. 123 - 124.
  • 35. Perego C., Carati A., Ingallina P., Mantegazza M. A., Bellussi G., Production of titanium containing molecular sieves and their application in catalysis, Appl. Catal. A: General 2001, vol. 221, s.63 - 72.
  • 36. Van Koningsveld H., van Bekkum H., Jansen J. C., On the location and disorder of the tetrapropylammonium (TPA) ion in zeolite ZSM-5 with improved framework accuracy, Acta Cryst. 1987, vol. B43, s. 127 - 132.
  • 37. Nagy J. B., Gabelica Z., Derouane E. G., Position and configuration of the quest organic molecules within the framework of the ZSM-5 and ZSM-11 zeolites, Zeolites 1983, vol. 3, s. 43 - 49.
  • 38. Tuel A., Ben Taarit Y., Synthesis of titanium silicalite-1 using hexapropyl-1,6-hexanediammonium ions as templating agent, Zeolites 1994, vol. 14, s. 594 - 599.
  • 39. Tuel A., Ben Taarit Y., Synthesis and characterization of titanium silicalite TS-1 prepared using phosphonium ions. Zeolites 1994, vol. 14, s. 272 - 281.
  • 40. Tuel A., Ben Taarit Y., Naccache C., Characterization of TS-1 synthesized using mixtures of tetrabutyl and tetrethyl ammonium hydroxides, Zeolites 1993, vol. 13, s. 454 - 461.
  • 41. Tuel A., Ben Taarit Y., Synthesis of TS-1 from titanosilicate gels containing TPAOH/TEAOH and TPAOH/NH4OH mixtures, Micropor. Mat. 1993, vol. 1, s. 179 - 189.
  • 42. Bek L. W., Davis M. E., Alkylammonium polycations as structure-directing agents in MFI zeolite synthesis, Micropor. Mesopor. Mat. 1998, vol. 22, s. 107—114.
  • 43. Geobaldo F., Bordiga S., Zecchina A., Giamello E., Leofanti G., Petrini G., DRS UV-VIS and EPR spectroscopy of hydroperoxo and superoxo complexes in titanium silicalite, Catal. Lett. 1992, vol. 16, s. 109 - 115.
  • 44. Trong On D., Bittar A., Sayari A., Kaliaguine S., Bonneviot L., Novel titanium sites in silicalites, Catal. Lett. 1992, vol. 16, s. 85 - 95.
  • 45. Zecchina A., Bordiga S., Lamberti C., Ricchiardi G., Leofanti G., Mantegazza M., Ti-silicalite and reaction mechanisms in cyclohexanone ammoxidation, Catal. Today 1996, vol. 32, s. 97 - 106.
  • 46. Bellussi G., Carati A., Clerici M. G., Maddinelli G., Millini R., Reactions of titanium silicalite with protic molecules and hydrogen peroxide, J. Catal. 1992, vol. 133, s. 220 - 230.
  • 47. Corma A., Esteve P., Martinez A., Solvent effects during the oxidation of olefins and alcohols with hydrogen peroxide in Ti-Beta catalyst: the influence of the hydrophilicity-hydrophobicity on the zeolite,.J. Catal. 1996, vol. 161, s. 11 - 19.
  • 48. Notari B., Titanium silicalite: A new selective oxidation catalyst, structure-activity and selectivity relationships in heterogenous catalysis, Stud. Surf. Sci. Catal. 1990, vol. 60, s. 243 - 252.
  • 49. Reddy J. S., Kumar R., Ratnasamy P., Titanium silicalite-2: synthesis, characterization and catalytic properties, Appl. Catal. 1990, vol. 58, s. L1 - L4.
  • 50. Kokotailo G. T., Chu P., Lawton S. L., Meier W. M., Synthesis and structure of synthetic zeolite ZSM-11, Nature 1978, vol. 275, s. 119 - 120.
  • 51. Fyfe C. A., Gies H., Kokotailo G. T., Pasztor C., Strobl H., Cox D. E., Detailed investigation of the lattice structure of zeolite ZSM-11 by a combination of solid-state NMR and synchrotron X-ray diffraction techniques, J. Am. Chem. Soc. 1989, vol. 111, s. 2470 - 2474.
  • 52. Bibby D. M., Milestone N. B., Aldridge L. P., Silicalite-2, a silica analogue of the aluminosilicate zeolite ZSM-11, Nature 1979, vol. 280, s. 664 - 665.
  • 53. Ramaswamy A. V., Sivasanker S., Ratnasamy P., Selective oxidation reactions over metallosilicate molecular sieves: a comparison of titanium and vanadium silicates with MEL structure, Micropor. Mat. 1994, vol. 2, s. 451 - 458.
  • 54. Tuel A., Ben Taarit Y., Comparison between TS-1 and TS-2 in the hydroxylation of phenol with hydrogen peroxide, Appl. Catal. A: General 1993, vol. 102, s. 69 - 77.
  • 55. Tuel A., Ben Taarit Y., Synthesis, characterization, and catalytic properties of titanium silicates prepared using phosphonium ions, Zeolites 1993, vol. 13, s. 357 - 364.
  • 56. Uguina M. A., Serrano D. P., Ovejero G., Van Grieken R., Camacho M., TS-2 synthesis from wetness-impregnated SiO2-TiO2 xerogels, Zeolites 1997, vol. 18, s. 368 - 378.
  • 57. Serrano D. P., Uguina M. A., Ovejero G., Van Grieken R., Camacho M., Crystallization of TS-1 and TS-2 zeolites with contribution of solid-solid transformations, Chem. Commun., 1996, s. 1097 - 1098.
  • 58. Davies M. E., New vistas in zeolite and molecular sieve catalysis, Acc. Chem. Res. 1993, vol. 26, s. 111 - 115.
  • 59. Camblor M. A., Corma A., Perez-Pariente J., Synthesis of titanoaluminosilicates isomorphous to zeolite Beta, active as oxidation catalysts, Zeolites 1993, vol. 13, s. 82 - 87.
  • 60. Camblor M. A., Mifsud A., Perez-Pariente J., Influence of the synthesis conditions on the crystallization of zeolite Beta, Zeolites 1991, vol. 11, s.. 792 - 797.
  • 61. Camblor M. A., Perez-Pariente J., Crystallization of zeolite beta : Effect of Na and K ions, Zeolites 1991, vol. 11, s. 202 - 210.
  • 62. Kanazirev V., Price G. L., The effect of O2 on the thermal activation of zeolite Beta, J. Catal. 1996, vol. 161, s. 156 - 163.
  • 63. Saxton R. J., Zajacek J. G., Preparation of an aluminosilicotitanate isomorphous with zeolite Beta. Patent USA 5 474 754, 1995.
  • 64. Borade R. B., Clearfield A., Prepartion of aluminum-rich Beta, Micropor. Mat. 1996, vol. 5, s. 289 - 297.
  • 65. Stelzer J., Paulus M., Hunger M., Weitkamp J., Hydrophobic properties of all-silica zeolite beta, Micropor. Mesopor. Mat. 1998, vol. 22, s. 1 - 8.
  • 66. Ertl G., Knozinger H., Weitkamp J., Handbook of heterogeneous catalysis, vol. 1, Weinheim VCH Verlagsgesellschaft GmbH 1997, s. 294.
  • 67. Perez-Pariente J., Martens J. A., Jacobs P. A., Factors affecting the synthesis efficiency of zeolite BETA from aluminosilicate gels containing alkali and tetrethylammonium ions. Zeolites 1998, vol. 8, s. 46 - 53.
  • 68. Perez-Pariente J., Martens J. A., Jacobs P. A., Crystallization mechanism of zeolite BETA from (TEA)2O, Na2O and K2O containing aluminosilicates gels, Appl. Catal. 1987, vol. 31, s. 35 - 64.
  • 69. Camblor M. A., Constantini M., Corma A., Esteve P., Gilbert L., Martinez A., Valencia S., A new highly efficient method for the synthesis of Ti-Beta zeolite oxidation catalyst, Appl. Catal. A: General 1995, vol. 133, s. L185 L189.
  • 70. Wadlinger R. L., Kerr G. T., Rosinski E. J., Catalytic composition of a crystalline zeolite. Patent USA 28, 341, 1975.
  • 71. Inoue T., Watanabe H., Method of producing zeolite beta. Patent EU 0 614 853 A2, 1994.
  • 72. Hopkins D., Method for synthesizing zeolite Beta.Patent WO 26663, 1994.
  • 73. Chao K. J., Sheu S. P., Lin L-H., Genet M. J., Feng M. H., Characterization of incorporated gallium in beta zeolite, Zeolites 1997, vol. 18, s. 18 - 24.
  • 74. Mostowicz R., Testa F., Crea F., Aiello R., Fonesca A., Nagy J. B., Synthesis of zeolite beta in presence of fluorides: Influence of alkali cations, Zeolites 1997, vol. 18, s. 308 - 324.
  • 75. Chatterjee M., Bhattcharya D., Hayashi H., Ebina T., Onodera Y., Nagase T., Sivasanker S., Iwasaki T., Hydrothermal synthesis and characterization of indium containing beta zeolite, Micropor. Mesopor. Mat. 1998, vol. 20, s. 87 - 91.
  • 76. Jappar N., Xia Q., Tatsumi T., Oxidation activity of Ti-Beta synthesized by a dry-gel conversion method, J. Catal. 1998, vol. 180, s. 132 - 141.
  • 77. Camblor M. A., Perez-Pariente J., Fornes V., Synthesis and characterization of gallosilicates and galloaluminosilicates isomorphous to zeolite Beta, Zeolites 1992, vol. 12, s. 280 - 286.
  • 78. Blasco T., Camblor M. A., Fierro J. L. G., Perez-Parientc J., X-Ray photoelectron spectroscopy of Ti-Beta zeolite, Micropor. Mat. 1994, vol. 3, s. 259 - 263.
  • 79. Corma A., Esteve P., Martinez A., Valencia S., Oxidation of olefins with hydrogen peroxide and tert-butyl hydroperoxide on Ti-Beta catalyst, J. Catal. 1995, vol. 152, s. 18 - 24.
  • 80. Corma A., Camblor M. A., Esteve P., Martinez A., Perez-Pariente J., Activity of Ti-Beta catalyst for the selective oxidation of alkenes and alkanes, J. Catal. 1994, vol. 145, s. 151 - 158.
  • 81. Reddy J. S., Sayari A., Oxidation of propylamine over titanium silicate molecular sieves, Appl. Catal. A: General 1995, vol. 128, s. 231 - 242.
  • 82. Climent M. J., Corma A., Garcia H., Iborra S., Primo J., Acid zeolites as catalysts in organic reactions : condensation of acetophenone with benzene derivatives, Appl. Catal. A: General 1995, vol. 130, s. 5 - 12.
  • 83. Sarbak Z., Mezoporowate materiały krzemianowe, Laboratoria, aparatura i badania 2007, vol. 1, s. 33 - 38.
  • 84. Linssen T., Cassiers K., Cool P., Vansant E. F., Mesoporous templated silicates : an overview of their synthesis, catalytic activation and evaluation of the stability. Adv. Colloid Interfac. 2003, vol. 103, s. 121 - 147.
  • 85. Ciesla U., Schuth F., Ordered mesoporous materials, Micropor. Mesopor. Mat. 1999, vol. 27, s. 131 - 149.
  • 86. Oye G., Sjoblom J., Stocker M., Synthesis, characterization and potential applications of new materials in the mesoporous range, Adv. Colloid Interfac. 2001, vol. 89 - 90, s. 439 - 466.
  • 87. Brunel D., Blanc A. C., Galarneau A., Fajula F., New trends in the design of supported catalysts on mesoporous silicas and their applications in fine chemicals, Catal. Today 2002, vol. 73, s. 139 - 152.
  • 88. Vartuli J. C., Malek A., Roth W. J., Kresge C. T., McCullen S. B., The sorption properties of as- synthesized and calcined MCM-41 and MCM-48, Micropor. Mesopor. Mat. 2001, vol. 44 - 45, s. 691 - 695.
  • 89. Bahrens P., Glaue A., Haggenmuller Ch., Schechner G., Structure-directed materials syntheses : synthesis field diagrams for the preparation of mesostructured silicas. Solid State Ionics 1997, vol. 101 - 103, s. 255 - 260.
  • 90. Kleestorfer K., Vinek H., Jentys A., Structure simulation of MCM-41 type materials, J. Mol. Catal. 2001, vol. 166, s. 53 - 57.
  • 91. Eimer G. A., Casuscelli S. G., Ghione G. E., Crivello M. E., Herrero E. R., Synthesis, characterization and selective oxidation properties of Ti-containing mesoporous catalysts, Appl. Catal. A: General 2006, vol. 298, s. 232 - 242.
  • 92. Kresge C. T., Leonowicz M. E., Roth W. J., Vartuli J. C., Beck J. S., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, vol. 359, s. 710 - 712.
  • 93. Beck J. S., Vartuli J. C., Roth W. J., Leonowicz M. E., Kresge C. T., Schmitt K. D., Chu C. T-W., Olson D. H., Sheppard E. W., McCullen S. B., Higgins J. B., Schlenker J. L., A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc. 1992, vol. 114, s. 10834 - 10843.
  • 94. Yiu H. H. P., Wright P. A., Botting N. P., Enzyme immobilization using siliceous mesoporous molecular sieves, Micropor. Mesopor. Mat. 2001, vol. 44 - 45, s. 763 - 768.
  • 95. Steel A., Carr S. W., Anderson M. W., 29Si Solid-State NMR study of mesoporous M41S materials, Chem. Mater. 1995, vol. 7, no. 10, s. 1829 - 1832.
  • 96. Bhaumik A., Tatsumi T., Double organic modification by 3-chloropropyl and methyl groups on pure silica MCM-41 and Ti-MCM-41: efficient catalyst for epoxidation of cyclododecene, Catal. Lett. 2000, vol. 66, s. 181 - 184.
  • 97. Monnier A., Schuth F., Huo Q., Kumar D., Margolese D., Maxwell R. S., Stucky G. D., Krishnamurty M., Petroff P., Firuozi A., Janicki M., Chmelka B. F., Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostrctures, Science 1993, vol. 261, s. 1299 - 1303.
  • 98. Corma A., Kan Q., Navarro M. T., Perez-Pariente J., Rey F., Synthesis of MCM-41 with different pore diameters without addition of auxiliary organics, Chem. Mater. 1997, vol. 9, s. 2123 - 2126.
  • 99. Blasco T., Corma A., Navarrro M. T., Perez-Pariente J., Synthesis, characterization, and catalytic
  • activity of Ti-MCM-41 structures, J. Catal. 1995, vol. 156, s. 65 - 74.
  • 100. Kumar D., Schumacher K., du Fresne von Hohenesche C., Grun M., Unger K. K., MCM-41, MCM-48 and related mesoporous adsorbents: their synthesis and characterisation, Colloid. Surface. A: Physicochemical and Engineering Aspects 2001, vol. 187 - 188, s. 109 - 116.
  • 101. Grun M., Unger K. K., Matsumoto A., Tsutsumi K., Novel pathways for the preparation of mesoporous MCM-41 materials: control of porosity and morphology, Micropor. Mesopor. Mat. 1999, vol. 27, s. 207 - 216.
  • 102. Ahn W. S, Lee D. H., Kim T. J., Kim J. H., Seo G., Ryoo R., Post-synthetic preparations of titanium-containing mesopore molecular sieves, Appl. Catal. A: General 1999, vol. 181, s. 39 - 49.
  • 103. Bhoumik A., Tatsumi T., Organically modified titanium-rich Ti-MCM-41, efficient catalysts for
  • epoxidation reactions, J. Catal. 2000, vol. 189, s. 31 - 39.
  • 104. Tanev P., Chibwe M., Pinnavala T. J., Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds, Nature 1994, vol. 368, s. 321 - 323.
  • 105. Zhang S. G., Fuji Y. Y., Yamashita H., Koyano K., Tatsumi T., Anpo M., Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolites at 328K, Chem. Lett. 1997, vol. 7, s. 659 - 660.
  • 106. Hagen A., Schueler K., Roessner F., The performance of Ti-MCM-41 in aqueous media and their mechanical treatment studied by in situ XANS, UV/VIS and test reactions, Micropor. Mesopor. Mat. 2002, vol. 51, s. 23 - 33.
  • 107. Kan Q., Bi Y., Ying Z., Wu T., Zhen K., Catalytic oxidation of α-eicosanol into eicosanic acid in the presence of Ti-MCM-41 or active component supported Ti-MCM-41 catalyst, Micropor. Mesopor. Mat. 2001, vol. 44 - 45, s. 609-617.
  • 108. Zheng S., Gao L., Zhang Q., Guo J., Synthesis, characterization and photocatalytic properties of titania-modified mesoporous silicate MCM-41, J. Mater. Chem. 2000, vol. 10, s. 723 - 727.
  • 109. Corma A., Jorda J. L., Navarro M. T., Rey F., One step synthesis of highly active and selective epoxidation catalyst formed by organic-inorganic Ti containing mesoporous composites, Chem. Commun. 1998, s. 1899 - 1900.
  • 110. Occelli M. L., Biz S., Auroux A., Effect of isomorphous substitution of Si with Ti and Zn in mesoporous silicates with the MCM-41 structure, Appl. Catat. A: General 1999, vol. 183, s. 231 - 239.
  • 111. Laha S. C., Kumar R., Promoter-induced synthesis of MCM-41 type mesoporous materials including Ti- and V-MCM-41 and their catalytic properties in oxidation reactions, Micropor. Mesopor. Mat. 2002, vol. 53, s. 163 - 177.
  • 112. Martinez Velarde A., Bark P., Niessen T. E. W., Hoelderich W. F., Hydrogen peroxide oxidation of D-glucose with titanium - containing zeolites as catalysts, J. Mol. Catal. A: Chemical 2000, vol. 157, s. 225 - 236.
  • 113. Chaudhari K., Bal R., Srinivas D., Chandwadkar A. J., Sivasankcr S., Redox behaviour and selective oxidation properties of mesoporous titano- and zirconosilicate MCM-41 molecular sieves, Micropor. Mesopor. Mat. 2001, vol. 50, s. 209—219.
  • 114. Laufer W., Hoelderich W. F., Direct oxidation of propylene and other olefins on precious metal containing Ti-catalyst, Appl. Catal. A: General 2001, vol. 213, s. 163 - 171.
  • 115. Reddy J. S., Sayari A., Oxidation of propylamine over titanium silicate molecular sieves, Appl. Catal. A: General 1995, vol. 129, s. 231 - 242.
  • 116. Rios L. A., Weckes P., Schuster H., Hoelderich W. F., Mesoporous and amorphous Ti-silicas on the epoxidation of vegetable oils, J. Catal. 2005, vol. 232, s. 19 - 26.
  • 117. Zhang W.-H., Shi J.-L., Wang L.-Z., Yan D.-S., Preparation and characterization of ZnO clusters inside mesoporous silica, Chem. Mater. 2000, vol. 12, s. 1408 - 1413.
  • 118. Attfield M. P., Sankar G., Thomas J. M., Facile heterogenisation of molecular Ti(OSiPh3)4 to form a highly active epoxidation catalyst, Catal. Lett. 2000, vol. 70, s. 155 - 158.
  • 119. Arinson B. J., Blanford Ch. F., Stein A., Solution-phase grafting of titanium dioxide onto the pore surface of mesoporous silicates: synthesis and structural characterization, Chem. Mater. 1997, vol. 9, s. 2842 - 2851.
  • 120. Ferreira P., Gocalves I. S., Kuhn F. E., Pillinger M., Rocha J., Thursfield A., Hue W-M., Zhang G., Synthesis and characterisation of MCM-41-supported dimolybdenum complexes, J. Mater. Chem. 2000, vol. 10, s. 1395 - 1401.
  • 121. Schumacher K., Ravikovitch P. I., Du Chesne A., Neimark A. V., Unger K. K., Characterization of MCM-48 materials, Langmuir 2000, vol. 16, s. 4648 - 4654.
  • 122. Alfredsson V., Anderson M. W., Structure of MCM-48 revealed by transmission electron microscopy, Chem. Mater. 1996, vol. 8, s. 1141 - 1146.
  • 123. Anderson M. W., Simplified description of MCM-48, Zeolites 1997, vol. 19, s. 220 - 227.
  • 124. Morey M. S., Davidson A., Stucky G. D., Silica-based cubic mesostructures: synthesis, characterization and relevance for catalysis, J. Porous Mat. 1998, vol. 5, s. 195 - 204.
  • 125. Van Der Voort P., Morey M., Stucky G. D., Mathieu M., Vansant E. F., Creation of VOX surface species on pure silica MCM-48 using gas-phase modification with VO(acac)2, J. Phys. Chem. B 1998, vol. 102, s. 585 - 590.
  • 126. Andersson S., Hyde S. T., Larsson K., Lidin S., Minimal surfaces and structures: from inorganic and metal crystals to cell membranes and biopolymers, Chem. Rev. 1988, vol. 88, s. 221 - 242.
  • 127. Gandy P. J. F., Klinowski J., Exact computation of the triply periodic G (Gyroid) minimal surface, Chem. Phys. 2000, vol. 321, s. 363 - 371.
  • 128. Vartuli J. C., Schmitt K. D., Kresge C. T., Roth W. J., Leonowicz M. E., McCullen S. B., Hellring S. D., Beck J. S., Schlenker J. L., Olson D. H., Sheppard E. W., Effect of surfactant/silica molar ratios on the formation of mesoporous molecular sieves: inorganic mimicry of surfactant liquid-crystal phases and mechanistic implications, Chem. Mater. 1994, vol. 6, s. 2317 - 2326.
  • 129. Gallis K. W., Landry Ch. C., Synthesis of MCM-48 by a phase transformation process, Chem. Mater. 1997, vol. 9, s. 2035 - 2038.
  • 130. Kim J. M., Kyun S., Ryoo R., Synthesis of MCM-48 single crystals, Chem. Commun. 1998, s. 259 - 260.
  • 131. Xu J., Luan Z., He H., Zhou W., Kevan L., A reliable synthesis of cubic mesoporous MCM-48 molecular sieves, Chem. Mater. 1998, vol. 10, s. 3690 - 3698.
  • 132. Ryoo R., Joo S. H., Kim J. M., Energetically favored formation of MCM-48 from cationic-neutral surfactant mixtures, J. Phys. Chem. B 1999, vol. 103, s. 7435 - 7440.
  • 133. Van Der Voort P., Mathieu M., Mees F., Vansant E. F., Synthesis of high-quality MCM-48 and MCM-41 by means of the gemini surfactant method, J. Phys. Chem. B 1998, vol. 102, s. 8847 - 8851.
  • 134. Huo Q., Margolese D. I., Stucky G. D., Surfactant control of phases in the synthesis of mesoporous silica-based materials, Chem. Mater. 1996, vol. 8, s. 1147 - 1160.
  • 135. Pena M. L., Kan Q., Corma A., Rey F., Synthesis of cubic mesoporous MCM-48 materials, Micropor. Mesopor. Mat. 2001, vol. 44 - 45, s. 9 - 16.
  • 136. Jun S., Kim J. M., Ryoo R., Ahn Y. S., Han M-H., Hydrothermal stability of MCM-48 improved by post-synthesis restructuring in salt solution, Micropor. Mesopor. Mat. 2000, vol. 41, s. 119 - 127.
  • 137. Schumacher K., Grun M., Unger K. K., Novel synthesis of spherical MCM-48, Micropor. Mesopor. Mat. 1999, vol. 27, s. 201 - 206.
  • 138. Corma A., Kan Q., Rey F., Synthesis of Si and Ti-Si-MCM-48 mesoporous materials with controlled pore sizes in the absence of polar organic additives and alkali metal ions, Chem. Commun. 1998, s. 579 - 580.
  • 139. Koyano K. A., Tatsumi T., Synthesis of titanium-containing mesoporous molecular sieves with a cubic structure, Chem. Commun. 1996, s. 145 - 146.
  • 140. Uphade B. S., Akita T., Nakamura T., Haruta M., Vapor-phase epoxidation of propene using H2 and O2 over Au/Ti-MCM-48, J. Catal. 2002, vol. 209, s. 331 - 340.
  • 141. Pena M. L., Dellarocca V., Rey F., Corma A., Coluccia S., Marchese L., Elucidating the local environment of Ti(IV) active sites in Ti-MCM-48: a comparison between silylated and calcined catalysts, Micropor. Mesopor. Mat. 2001, vol. 44 - 45, s. 345 - 356.
  • 142. Dapurkar S. E., Badamali S. K., Selvam P., Nanosized metal oxides in the mesopores of MCM-41 and MCM-48 silicates, Catal. Today 2001, vol. 68, s. 63 - 68.
  • 143. Dapurkar S. E., Selvam P., Encapsulation of Fe2O3 nanoparticles in periodic mesoporous materials, Mater. Phys. Mech. 2001, vol. 4, s. 13 - 16.
  • 144. Govindaraj A., Nath M., Eswaramoorthy M., Studies of C60 and C70 incorporated in cubic mesoporous silica (MCM-48), Chem. Phys. Lett. 2000, vol. 317, s. 35 - 39.
  • 145. Washmon-Kriel L., Jimenez W. L., Balkus K. J., Cytochrome c immobilization into mesoporous molecular sieves, J. Mol. Catal. B: Enzymatic 2000, vol. 10, s. 453 - 469.
  • 146. Kisler J. M., Dahler A., Stevens G. W., O’Connor A. J., Separation of biological molecules using mesoporous molecular sieves, Micropor. Mesopor. Mat. 2001, vol. 44 - 45, s. 769 - 774.
  • 147. Kłopotek A., Kłopotek B. B., 2,3-Epoksypropanol-l jako substrat do syntezy środków powierzchniowo czynnych, Przem. Chem. 1990, vol. 69, nr 6, s. 248 - 251.
  • 148. Becker H.-P., Wirth H. O., Phosphorsaureester, Phosphonsaureester und deren Gemische. Patent niem. 2610763 A1, 1976.
  • 149. Kłopotek B. B., Kijeński J., New non-ionic surfactants of fatty alcohols maleic acid monoesters and glycidol, Tenside Surf. Det. 1997, vol. 34, no. 2, s. 78 - 82.
  • 150. Kłopotek B. B., Kijeński J., New non-ionic surfactnts based on fatty alcohols maleic acid monoesters and glycidol, Properties and application potential, Tenside Surf. Det. 1997, vol. 34, no. 3, s. 174 - 177.
  • 151. Milchert E., Wróblewska A., Otrzymywanie glicydolu, Przem. Chem. 1996, vol. 75, nr 10, s. 367 - 387.
  • 152. Wróblewska A., Milchert E., Epoksydacja alkoholu allilowego do glicydolu 30-proc. nadtlenkiem wodoru na katalizatorze TS-1, Przem. Chem. 2000, vol, 79, nr 9, s 302 - 304.
  • 153. Hanson R. M., The synthetic methodology of nonracemic glycidol and related 2,3-epoxy alcohols, Chem. Rev. 1991, vol. 91, no. 4, s. 437 - 475.
  • 154. Chen J., Shum W., A practical synthetic route to enantiopure 3-aryloxy-1,2-propanediols from chiral glycidol, Tetrahedron Lett. 1995, vol. 36, no. 14, s. 2379 - 2380.
  • 155. Yeganeh H., Lakouraj M. M., Jamshidi S., Synthesis and properties of biodegradable elastomeric epoxy modified polyurethanes based on poly(ε-caprolactone) and poly(ethylene glycol), Eur. Polym. J. 2005, vol. 41, s. 2370 - 2379.
  • 156. Dworak A., Trzebicka B., Wałach W., Utrata A., Nowe termowrażliwe reaktywne polietery oparte na glicydolu, Polimery 2003, vol. 48, nr 7 - 8, s. 484 - 489.
  • 157. Stevens V. L., Sexton A. R., Corson F. P., Linear copolymers of glycidol. Patent USA 4014854, 1977.
  • 158. Acevedo O. L., Andrews R. S., Synthesis of propane-2,3-diol combinatorial monomers, Tetrahedron Lett. 1996, vol. 37, no. 23, s. 3931 - 3934.
  • 159. Weigert W. M., Kleemann A., Schreyer G., Glycid - Herstellung and Eigenschaften, Chemiker Zeitung 1975, vol. 99, nr. 1, s. 19 - 26.
  • 160. Fisher W. C., Linder S. M., Pelley R. L., Liao H.-P., Glycidol and glycerol process. Patent USA 3954815.
  • 161. Carlson G. J., Skinner J. R., Epoxidation process using hydrogen peroxide and acid salt of a heavy metal peracid. Patent USA 2 833 787, 1958.
  • 162. Heim W., Kleemann A., Kolb H., Schreyer G., Continuous process for recovery of glycidol. Patent USA 4 009 188, 1977.
  • 163. Wenzke C. J., Peekskill N. Y., Mednick S. A., Process for epoxidation of allyl alcohol by peracetic acid. Patent USA 3 509 183, 1970.
  • 164. Wróblewska A., Milchert E., Epoxidation of allyl alcohol with hydrogen peroxide on TS-1 catalyst in acetone solution, Pol. J. Appl. Chem. 2001, vol. XLIV, no. 1 - 2, s. 1 - 11.
  • 165. Wróblewska A., Milchert E., Influence of acetone and acetonitrile content on the epoxidation of allyl alcohol with hydrogen peroxide over TS-1 catalyst, Chem. Pap. 2001, vol. 55, no. 3, s. 151 - 191.
  • 166. Wróblewska A., Milchert E., Optimization of the reaction parameters of epoxidation of allyl alcohol with hydrogen peroxide on TS-1 catalyst, Chem. Pap. 2004, vol. 58, no. 4, s. 1 - 9.
  • 167. Wróblewska A., Rzepkowska M., Milchert E., Optimization of the technological parameters of epoxidation of allyl alcohol by hydrogen peroxide over Ti-Beta catalyst, J. Chem. Technol. Biotechnol. 2004, vol. 79, s. 343 - 353.
  • 168. Wróblewska A., Rzepkowska M., Milchert E., Optimisation of the technological parameters of epoxidation of allyl alcohol with hydrogen peroxide over Ti-Beta catalyst, Oxid. Commun. 2004. vol. 27, no. 3, s. 395 - 609.
  • 169. Wróblewska A., Rzepkowska M., Lenart S., Westerlich S., Grzmil B., Milchert E., Influence of solvent on the epoxidation of allyl alcohol by hydrogen peroxide over titanium silicalite catalysts, Chem. Pap. 2005, vol. 59, no. 2, s. 139 - 142.
  • 170. Wróblewska A., Liquid phase epoxidation of allyl compounds with hydrogen peroxide over titanium silicalite catalysts, J. Mol. Catal. A: Chemical 2005, vol. 229, s. 207 - 210.
  • 171. Wróblewska A., Optimization of the reaction parameters of epoxidation of allyl alcohol with hydrogen peroxide over TS-2 catalyst, Appl. Catal. A: General 2006, vol. 3 - 9, s. 192 - 200.
  • 172. Wróblewska A., Milchert E., Epoxidation of allyl alcohol with hydrogen peroxide over titanium silicalite TS-2 catalyst, J. Chem. Technol. Biotechnol. 2007, vol. 82, s. 681 - 686.
  • 173. Wróblewska A., The new method of glycidol synthesis - a valuable raw material for production of nonionic surfactants, in: International Scientific Conference "Surfactants and dispersed system in theory and practice ", Książ Castle, May 22—24 2007, s. 205 - 207.
  • 174. Hutchings G. J., Lee D. F., Minihan A. R., Epoxidation of allyl alcohol to glycidol using titanium silicalite TS-1: effect of the method of preparation, Catal. Lett. 1995, vol. 33, s. 369 - 385.
  • 175. Dwyer J., Zhao J., Rawlence D., Synthesis of NH4-form heteroatom-substituted MFI zeolites in the presence of fluoride anions, in: Proceedings of the 9th International Zeolite Conference Montreal, ed. R. Von Ballamos, Butterworth Heinemann 1992, s. 155 - 160.
  • 176. Thangaraj A., Kumar R., Sivasanker S., Evidence for the simultaneous incorporation of Al and Ti in MFI structure (Al-TS-1), Zeolites 1992, vol. 12, s. 135 - 137.
  • 177. Hutchings G. J., Lee D. F., Minihan A. R., Epoxidation of allyl alcohol to glycidol using titanium silicalite TS-1: effect of the reaction conditions and catalyst acidity, Catal. Lett. 1996, vol. 39, s. 83 - 90.
  • 178. Qiu S., Pang W., Yao S., Growth of single crystals of borozeosilite and titanozeosilite, Stud. Surf. Sci. Catal. 1989, vol. 49, s. 133 - 138.
  • 179. Hutchings G. J., Lee D. F., Control of product selectivity for the epoxidation of allyl alcohol by variation of the acidity of the catalyst TS-1, J. Chem. Soc., Chem. Commun. 1994, s. 1095 - 1096.
  • 180. Clerici M. G., Ingallina P., Epoxidation of lower olefins with hydrogen peroxide and titanium silicalite, J. Catal. 1993, vol. 140, s. 71 - 83.
  • 181. Adam W., Corma A., Reddy T. I., Renz M, Diastereoselective catalytic epoxidation of chiral allylic alcohols by the TS-1 and Ti-β zeolites: evidence for a hydrogen-bonded, peroxy-type loaded complex as oxidizing species, J. Org. Chem. 1997, vol. 62, s. 3631 - 3637.
  • 182. Adam W., Corma A., Martinez A., Mitchell C. M., Indrasena T., Renz M., Smerz A. K., Diastereoselective epoxidation of allylic alcohols with hydrogen peroxide catalyzed by titanium-containing zeolites or methyltrioxorhenium versus stoichiometric oxidation with dimethyldioxirane: Clues on the active species in the zeolite lattice, J. Mol. Catal. A: Chemical 1997, vol. 117, s. 357 - 366.
  • 183. Vayssilov G. N., van Santen R. A., Catalytic activity of titanium silicalites - a DFT study, J. Catal. 1998, vol. 175, s. 170 - 174.
  • 184. Sinclair P. E., Catlow C. R. A., On the formation of titanyl (Ti=O) groups in mesoporous and microporous titanosilicate catalysts: a computational study, Chem. Commun. 1997, s. 1881 - 1882.
  • 185. Tantanak D., Vincent M. A., Hillier I. H., Elucidation of the mechanism of alkene epoxidation by hydrogen peroxide catalysed by titanosilicates: a computational study, Chem. Commun. 1998, s. 1031 - 1032.
  • 186. Crocker M., Herold R. H. M., Orpen A. G., Overgaag M. T. A., Synthesis and characterisation of titanium silasesquioxane complexes: soluble models for the active site in titanium silicate epoxidation catalysts,. J. Chem. Soc., Dalton Trans. 1999, s. 3791 - 3804.
  • 187. Wells D. H., Delgass W. N., Thomson K. T., Evidence of defect-promoted reactivity for epoxidation of propylene in titanosilicate (TS-1) catalysts: a DFT study, J. Am. Chem. Soc. 2004, vol. 126, s. 2956 - 2962.
  • 188. Bhaumik A., Kumar R., Ratnasamy P., Chemoselective oxidation of organic compounds having two or more functional groups, Zeolites and related microporous materials: State of the art 1994, Stud. Surf. Scien. Catal. 1994, vol. 84, s. 1883 - 1888.
  • 189. Hutchings G. J., Firth P. G., Lee D. F., McMorn P., Bethell D., Bulman Page P. C., King F., Hancock F., Shape selective epoxidation of crotyl alcohol with H2O; in the presence of TS-1, in: Proceedings of the 3rd World Congress on Oxidation Catalysis, San Diego, 21 - 26 September 1997, Stud. Surf. Scien. Catal. 1997, vol. 110, s. 535 - 544.
  • 190. Van der Waal J. C., Rigutto M. S., van Bekkum H., Zeolite titanium beta as a selective catalyst in epoxidation of bulky alkenes, Appl. Catal. A: General 1998, vol. 167, s. 331 - 342.
  • 191. Wu P., Tatsumi T., A novel titanosilicate with MWW structure. III. Highly efficient and selective production of glycidol through epoxidation of allyl alcohol with H2O2, J. Catal. 2003, vol. 214, s. 317 - 326.
  • 192. Shetti V. N., Manikandan P., Srinivas D., Ratnasamy P., Reactive oxygen species in epoxidation reactions over titanosilicate molecular sieves, J. Catal. 2003, vol. 216, s. 461 - 467.
  • 193. Wróblewska A., Rzepkowska M., Milchert E., Epoxidation of methallyl alcohol with hydrogen peroxide over TS-1 catalyst, Appl. Catal. A: General 2005, vol. 294, s. 244 - 250.
  • 194. Wróblewska A., Ławro E., Milchert E., Technological parameter optimalization for epoxidation of methallyl alcohol by hydrogen peroxide over TS-1 catalyst, Ind. Eng. Chem. Res. 2006, vol. 45, s. 7365 - 7373.
  • 195. Rzepkowska M., Wróblewska A., Lewandowski G., Epoxidation of methallyl chloride with 30% H2O2 over the TS-1 catalyst, Chem. Pap. 2004, vol. 58, no. 5, s. 324 - 329.
  • 196. Wróblewska A., Milchert E., Optimization of technological parameters of epoxidation of methallyl chloride by hydrogen peroxide over TS-1 catalyst, Org. Proc. Res. Dev. 2006, vol. 10, s. 525 - 533.
  • 197. Wajzberg J., Wróblewska A., The new method of 1,2-epoxy-3-butanol production over titanium silicalite catalysts, Pol. J. Chem. Tech. 2007, vol. 9, no. 2, s. 49 - 52.
  • 198. Wróblewska A., Wajzberg J., Epoxidation of l-buten-3-ol under atmospheric pressure over the Ti-Beta catalyst, Pol. J. Chem. Tech. 2007, vol. 9, no. 2, s. 120 - 123.
  • 199. Wróblewska A., Wajzberg J., Milchert E., Grzmil B., Ziebro J., The pressure method of 1--butene-3-ol epoxidation over Ti-Beta catalyst. Pol. J. Chem. Tech. 2007, vol. 9, no. 2, s. 53 - 56.
  • 200. Wróblewska A., Wajzberg J., Milchert E., Epoxidation of l-butene-3-ol with hydrogen peroxide under autogenic and atmospheric pressure, J. Adv. Oxid. Technol. 2007, vol. 10, no. 2, s. 316 - 324.
  • 201. Wajzberg J., Wróblewska A., Epoxidation of l-buten-3-ol over titanium silicalite catalysts, w: Materiały XIV Forum Zeolitowego, Kocierz, 16 - 21 września 2007, s. 297 - 302.
  • 202. Avenoza A., Cativiela C., Peregrina J. M., Sucunza D., Zurbano M., An alternative approach to (S)- and (R)-2-methylglycidol O-benzyl ether derivatives, Tetrahedron-Asvmmetr. 2001, vol. 12, s. 1383 - 1388.
  • 203. Meister Ch.,. Scharp H.-D, Synthese von (1S)-(-) frontalin, Liebigs Ann. Chem. 1983, vol. 6, s. 913 - 921.
  • 204. Uemura I., Miyagawa H., Ueno T., Asymmetric total synthesis of AK-toxins, Tetraherdon 2002, vol. 58, s. 2351 - 2358.
  • 205. Hatakeyama S., Fukuyma H., Mukugi Y., Irie H., Total synthesis of (+) - Conagenin, Tetrahedron Lett. 1996, vol. 37, no. 23, s. 4047 - 4050.
  • 206. Shao H., Zhu Q., Goodman M., A new asymmetric synthesis of α-methylcysteines via chiral aziridines, J. Org. Chem. 1995, vol. 60, s. 790 - 791.
  • 207. Benedetti F., Berti F., Norbedo S., Ring-opening of epoxyalcohols by diethylaluminium cyanide. Regio- and stereoselective synthesis of cyano-2,3-diols, Tetrahedron Lett. 1996, vol. 40, s. 1041 - 1044.
  • 208. Hatakeyama S., Matsumoto H., Fukuyama H., Mukugi Y., Irie H., Et2AlCl - catalyzed cyclization of epoxytrichloroacetimides for the synthesis of α-substitued serines, J. Org. Chem. 1997, vol. 62, s. 2275 - 2279.
  • 209. Uemura I., Yamada K., Sugiura K., Miyagawa H., Ueno T., Efficient stereoselective synthesis of a l-hydroxymethyl-2-methylglycodol derivative, Tetrahedron-Asymmetr. 2001, vol. 12, s. 943 - 947.
  • 210. Oyama T., Yamashira T., Suzuki T., Ebitani K., Hoshino M., Iijima T., Tomoi M., Photo-crosslinking of polystyrenes having pendant epoxy groups, React. Fund. Polym. 2001, vol. 49, s. 99 - 116.
  • 211. Adkins K. P., Electroconductive coating composition. Patent USA 4 879 064, 1989.
  • 212. Habermeier J., Porret D., Binuclear N-heterocyclic polyglycidol compounds, processes for their manufacture, and their use. Patent USA 3 867 385, 1975.
  • 213. Nakamura H., Wakizaka M., Process for preparing polyol resins. Patent EU 0 336 724 B1, 1997.
  • 214. Ariga N., Nanbu J., Oikawa H., Photocurable resin compositions. Patent USA 4 085 018, 1978.
  • 215. Burba Ch., Mrotzek W., Imidazolyl — urea compounds and their use as cure accelerators in epoxy resin compositions for the production of moldings. Patent USA 4 968 732, 1990.
  • 216. Maeda H., Hasegawa K., Fukai K., Sekiguchi H., Hayakawa F., Takamura M., Process for preparing a polyester compound from epoxy resin material obtained from 2-methylepichlorohydrin. Pat. USA 3 507 820, 1970.
  • 217. Wierer K. A., Hashemzadeh A., Marguardt K., Process for producing wood particle board. Patent USA 0 074 095 A1, 2002.
  • 218. Chumbley L. E., Polycarbonates incorporating 2-methylepichlorohydrin. Patent USA 4 168 368, 1979.
  • 219. Korte K., Polyether esters, their production and use. Patent USA 5 112 940, 1992.
  • 220. Patel K. M., Stevenson T. M., Herbicidal oxazine ethers. Patent USA 5 510 318, 1996.
  • 221. Aberhart D. J., Lin L. J., Studies on the biosynthesis of (β-lactam antibiotics. Part 1. Stereospecific syntheses of (2RS,3S)-[4,4,4,-2H3]-, (2RS,3S)-[4-3H]-, (2RS,3R)-[4-3H]-, and (2RS, 3S)-[4-13C]-Valine. Incorporation of (2RS,3S)-[4-13C]-Valine into Penicillin V, J. Chem. Soc. Perkin Trans. 1974, vol. 20, s. 2320 - 2326.
  • 222. Tanner D., Stereocontrolled synthesis via chiral aziridines. Pure & Appl. Chem. 1993, vol. 65, no. 6, s. 1319 - 1328.
  • 223. Raczko J., From furan to open-chain systems. Synthesis of C1-C9 fragnebt of tylonolide, Tetrahedron 2003, vol. 59, s. 10181 - 10186.
  • 224. Kobayashi M., Wang W., Tsutsui Y., Sugimoto M., Murakami N., Absolute stereostructure and total synthesis of Leptomycin B, Tetrahedron Lett. 1998, vol. 39, s. 8291 - 8294.
  • 225. Pasto M., Moyano A., Pericas M. A., Riera A., Enantioselctive synthesis of fully protected and 3-amino-2-hydroxy butyrates, Tetrahedron-Asymmetr. 1995, vol. 6, no. 9, s. 2329 - 2342.
  • 226. Matsushima Y., Nakamura T., Tohyama S., Eguchi T., Kakinuma K., Versatile route to 2,6-dideoxyamino sugars from non-sugar materials: syntheses of vicenisamine and kedarosamine, J. Chem. Soc., Perkin Trans. 2001, vol. 1, s. 569 - 577.
  • 227. Wróblewska A., Milchert E., Ławro E., Epoksydacja 2-buten-1-olu na katalizatorze TS-1, Przem. Chem. 2006, vol. 85, nr 8-9, s. 687 - 690.
  • 228. Wróblewska A., Ławro E., Milchert E., Epoxidation of 2-buten-l-ol over Ti-MCM-41 and Ti-MCM-48 titanium silicalite catalysts, Pol. J. Chem. Tech. 2007, vol. 9, no. 3, s. 1 - 4.
  • 229. Davies L. J., McMorn P., Bethell D., Bulman Page P. C., King F., Hancock F. E., Hutchings G. J., Oxidation of crotyl alcohol using Ti-β and Ti-MCM-41 catalysts, J. Mol. Catal. A: Chemical 2001, vol. 165, s. 243 - 247.
  • 230. Davies L. J., McMorn P., Bethell D., Bulman Page P. C., King F., Hancock F. E., Hutchings G. J., By-product formation causes leaching of Ti from the redox molecular sieve TS-1, Chem. Commun. 2000, s. 1807 - 1808.
  • 231. Davies L. J., McMorn P., Bethell D., Bulman Page P. C., King F., Hancock F. E.., Hutchings G. J., Effect of preparation method on leaching Ti from the redox molecular sieve TS-1, Phys. Chem. Chem. Phys. 2001, vol. 3, s. 632 - 639.
  • 232. Davies L. J., McMorn P., Bethell D., Bulman Page P. C., King F., Hancock F. E., Hutchings G. J., Epoxidation of crotyl alcohol using Ti-containing heterogeneous catalysts: comments on the loss of Ti by leaching, J. Catal. 2001, vol. 198, s. 319 - 327.
  • 233. Ziółek M., Catalytic liquid-phase oxidation in heterogeneous system as green chemistry goal-advantages and disadvantages of MCM-41 used as catalyst, Catal. Today, 2004, vol. 90, s. 145 - 150.
  • 234. Kerton O. J., McMorn P., Bethell D., King F., Hancock F., Burrows A., Kiely Ch. J., Ellwood S., Hutchings G., Effect of structure of the redox molecular sieve TS-1 on the oxidation of phenol, crotyl alcohol and norbornylene, Phys. Chem. Chem. Phys. 2005, vol. 7, s. 2671 - 2678.
  • 235. Valluri M., Hindupur R. M., Panicker B., Labadie G., Jung J.-Ch., Avery M. A., Total synthesis of epothilone B, Org. Lett. 2001, vol. 23, no. 3, s. 3607 - 3609.
  • 236. Hindupur R. M., Panicker B., Valluri M., Avery M. A., Total synthesis of epothilone A, Tetrahedron Lett. 2001, vol. 42, s. 7341 - 7344.
  • 237. Hatakeyama S., Sakurai K., Takano S., Preparation of O-protected (2S,3S)-1,2-epoxy-3-butanols, enanctioselective syntheses of (-)-rhodinose and (+) epimiscarine iodide, Hererocycles 1986, vol. 24, no. 3, s. 633 - 636.
  • 238. Jung M. E., Jung Y. H., Rapid synthesis of β-hydroxy-α-amino acids, such as L-threonine, β-hydroxyphenylalanine, and β-hydroxyleucine, via an application of the Sharpless asymmetric epoxidation, Tetrahedron Lett. 1989, vol. 30, no. 48, s. 6637 - 6640.
  • 239. Piro A. J., Taylor C. C., Belli J. A., Interactions between radiation and drug damage in mammalian cells. Delayed expression of actinomycin D/X-ray effccts in exponential and plateau phase cells, Radiat. Res. 1975, vol. 63, s. 346 - 349.
  • 240. Kohno J., Kawahata T., Otake T., Morimoto M., Mori H., Ueba N., Nishio M., Kinumaki A., Komatsubara S., Bisci. Biotech. Biochem. 1996, vol. 60, no. 6, s. 1036 - 1037.
  • 241. Brill W. F., The origin of epoxides in the liquid phase oxidation of olefins with molecular oxygen, J. Am. Chem. Soc. 1963, vol. 85, s. 141 - 143.
  • 242. Golova B. M., Motovilâk L. V., Politanskij S. F., Stepanov M. V., Čelâdin V. T., Opredelenie osnovnyh komponentov processa polučeniâ glicerina putem gidroksilirovaniâ allilovogo spirta, Zavod. Lab. 1974, vol. 40, s. 1192 - 1194.
  • 243. Montgomery D. C., Design and analysis of experiments, New York, Wiley 1976.
  • 244. Nalimow W. W., Czernowa W. A., Statystyczne metody planowania doświadczeń. Warszawa, WNT 1967.
  • 245. Polański Z., Planowanie doświadczeń w technice. Warszawa, WNT 1984.
  • 246. Zieliński R., Tablice statystyczne, Warszawa, PWN 1992.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0049-0062
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.