PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Metody obliczeniowe stateczności i nośności granicznej konstrukcji kadłuba okrętowego

Autorzy
Identyfikatory
Warianty tytułu
EN
Computational methods of stability and ultimate strength in ship hull structures
Języki publikacji
PL
Abstrakty
PL
Celem pracy jest przedstawienie propozycji metody określania zależności pomiędzy odkształceniem i naprężeniem panelu ściskanego poddanego dowolnej kombinacji obciążeń: rozciągania i ściskania w dwóch kierunkach oraz ścinania. W pracy omówiono także metody wyznaczania nośności granicznej kadłuba oraz zaproponowano przybliżoną metodę analizy nośności z uwzględnieniem zginania, ścinania i skręcania.
EN
A ship hull is a complex structure composed of plating and stiffeners, subject to the action of diverse loads (the weight of the hull, cargo, ballast, equipment, buoyancy forces and wave forces), inducing both local and global effects, with the following cross-sectional forces: vertical and horizontal bending, vertical and horizontal shear and torsion. An analysis of longitudinal strength is a fundamental aspect in the evaluation of a ship hull structural strength, particularly overall bending due to the vertical bending moment. Other forces are less significant, though some are important for specific types of ships, an example being torsion of open-deck ships, particularly containerships, and shear in the case of bulk-carriers, where large shear forces appear between empty and full holds. Longitudinal strength is analysed by way of the method of permissible stresses, which are defined in the rules of classification societies. In recent years, requirements concerning the ultimate capacity of a ship hull have also appeared in the rules, resulting in the necessity for development of analysis methods. Ultimate limit states are the subject of this dissertation, including the ultimate capacity of ship hull structural elements subject to loads being an effect of the distribution of internal forces in the hull beam, as well as the ultimate capacity of the ship hull. A case of destruction due to yielding and buckling is considered under the following assumptions: structural material is ductile; excessive stress concentrations causing fatigue damage do not appear; the material is plastic; manufacturing failures related to welding which can result in cracking are disregarded. Computational methods applied in the analysis of the ultimate capacity of the ship hull and its structural elements are presented in the dissertation. The principal subject is the approximate methods applied due to the size and complexity of the real object. The investigations are focused mainly on the ultimate capacity of the ship hull subject to bending moments. The analysis of hull bending, assuming a flat cross-section hypothesis, is relatively simple. Shear and torsion of the ship hull are investigated less, for two reasons: these effects generally induce smaller stresses, and the analysis is much more complex since the out-of-plane deformations of the cross-section must be considered. The objective of the dissertation is to propose a method for evaluation of the stress-strain relationship of the ship panel subject to an arbitrary combination of loading: two-directional tension/compression and shear. The methods for evaluating the ship hull ultimate capacity are also presented and an approximate method including bending, shear and torsion is proposed. Chapter 1 introduces the problems of ship hull ultimate capacity. A brief description of loads acting on the ship hull and the methods of evaluation of their characteristics using the rules of classification societies are given in Chapter 2. The formulation and solution to the problem of elastic stability of stiffened ship panels employing two deformation models of stiffener web are given in Chapter 3. In the first model - rigid web - the assumption is accepted that the web is undeformed in cross-section while in the second -flexible web - such deformations are allowed. A comparison of results for both models is important, as the flexible web model requires much more computational effort. Elastic buckling stress is used for evaluating the panel ultimate capacity employing approximate formulations, as well as for evaluation of the stress-strain relationship for the panel. The proposed method is referred to as analytical-numerical because assumptions are made concerning the deformation mode, while the numerical approach is used for the solution to the problem. When applying approximate methods for analysis of the ship hull ultimate capacity, an important issue is to compute buckling stresses and evaluate the stress-strain relationship subject to complex loading. By employing the finite element method, arbitrary problem can be solved but the related computational effort is significant; therefore, approximate methods have become attractive. These methods are described in Chapter 4, where the procedure for construction of the stress-strain relationship for compressed panels, originally derived by Gordo and Soares, is presented. The method is - as are other approximate approaches - incapable of dealing with complex loading which is necessary for the analysis of ship hulls subject to bending, shear and torsion. Hence an approximate method for the evaluation of the response of ship panels subject to compression and shear is presented, based on the concept of the stiffened plate finite element. In this approach, identical displacement functions are employed for the plate and stiffeners. In Chapter 5 a proposition is presented for a method for evaluation of the ship hull ultimate capacity subject to all internal forces in the hull beam. A computational model of a thin-walled beam is applied, accepting the basic assumptions of one of the approximate methods -the Smith method - that the panels buckle between longitudinal and transversal girders. It implies division into structural elements - longitudinally and transversally stiffened panels. The stress-strain relationships according to the approach presented in Chapter 4 are evaluated for the panels and applied in the analysis of the ultimate capacity of the ship hull instead of constitutive relationships. Verification of the method, as applied in the analysis of a number of examples, proved that the results are consistent with those available in the literature. The dissertation is summarized in Chapter 6 where future investigations are also presented. The methods developed in the dissertation and their numerical implementation can be an effective approach to investigation of the ultimate capacity of a ship hull. The method can be implemented in computer codes supporting the process of designing and verifying ship structures, developed by the classification societies.
Rocznik
Strony
3--165
Opis fizyczny
Bibliogr. 195 poz., tab., rys.
Twórcy
autor
  • Zakład Konstrukcji, Mechaniki i Technologii Okrętów, Politechnika Szczecińska
Bibliografia
  • 1. Adluri S. M. R., Madugula M. K. S., Torsional - flexural buckling strength of steel angles, Can. J. Civ. Eng., 23, 1996,260-271.
  • 2. Adluri S. M. R., Madugula M. K. S., Flexural buckling of steel angles: experimental investigation, J. Struct. Engng, 122, 1996, 309-317.
  • 3. Ahmed M. Z., Weisgerber F. E., Torsion constant for matrix analysis of structures including warping effect, Int. J. Solids Structures, 33, 1996, 361 - 374.
  • 4. AlfanoG., Marotti de Sciarra F., Rosati L., Automatic analysis of multicell thin-walled sections, Comp. Struct., 59, 1996, 641 - 655.
  • 5. Baba S., Kajita T., Plastic analysis of torsion of a prismatic beam, Int. J. Numer. Meth. Engng, 18, 1982,927-944.
  • 6. Badran S. F., Nassef A. O., Metwalli S. M., Stability of Y stiffeners in ship plating under uniaxial compressive loads, Ships and Offshore Struct., 2, 2007, 87 - 94.
  • 7. Bai Y., Bendiksen E., Terndrup Pedersen P., Collapse analysis of ship hulls. Marine Struct., 6, 1993, 485-507.
  • 8. Béghin D., Jastrzębski T., Taczała M., Nouveau logiciel RESULT pour l'evaluation de la resistance ultime des navires, Proc. Session ATMA, Paris, 1995, 289 - 307.
  • 9. Béghin D., Baumans P., Jastrzębski T., Taczała M., RESULT - a computer code for evaluation of the ultimate longitudinal strength of hull girder, Proc. 6th Int. Symp. Pract. Design of Ships and Mobile Units, The Society of Naval Architects of Korea, 1995, 1832 - 843.
  • 10. Béghin D., Baumans P., Jastrzębski T., Taczała M., Some considerations on safety margins of ship hull structure in longitudinal bcnding, Proc. 1st Int. Conf. on Marine Technology ODRA'95, Szczecin 1995, 219-226.
  • 11. Béghin D., Parmantier G., Jastrzębski T., Taczała M., Sekulski Z., Hull girder safety and reliability of bulk carriers, Proc. 7th Int. Symp. Pract. Design of Ships and Mobile Units, Hague, 1998.
  • 12. Béghin D., Jastrzębski T., Taczała M., RESULT - computer code for evaluation of ultimate longitudinal strength of ship hull, Report No BM/DB/01/97, Bureau Veritas, Paris, September 1997, 261-272.
  • 13. Béghin D., Jastrzębski T., Taczała M., Calculation of ultimate bending moments and safety factors, Report No BM/DB/02/97, Bureau Veritas, Paris, September 1997.
  • 14. Béghin D., Jastrzębski T., Taczała M., Ultimate capacity of ship hulls in combined bending, Proc. 3rd Int. Conf. on Marine Technology ODRA'99, Szczecin 1999, 71-80.
  • 15. Bedair O. K., Influence of stiffener location on the stability of stiffened plates under compression and in-plane bending, Int. J. Mech. Sci., 39, 1997, 33 - 49.
  • 16. Bleich F., Buckling Strength of Metal Structures, McGraw-Hill, New York, 1952.
  • 17. Boswell L. F., Li Q., Consideration of the relationships between torsion, distortion and warping of thin-walled beams, Thin-Walled Struct., 21, 1995, 147-161.
  • 18. Butler R., Tyler A. A., Cao W., Optimum design and evaluation of stiffened panels with practical loading, Comp. Struct., 52, 1994, 1107 - 1118.
  • 19. Byklum E., Amdahl J., A simplified method for elastic large deflection analysis of plates and stiffened panels due to local buckling, Thin-Walled Struct., 40, 2002, 925 - 953.
  • 20. Caldwell J. B., Ultimate Longitudinal Strength, Trans. RINA, 107, 1965, 411 - 430.
  • 21. Caridis P. A., Frieze P. A., Flexural-torsional elasto-plastic buckling in flat stiffened plating using dynamic relaxation. Part 1: Theory, Thin-Walled Struct., 6, 1988, 453 - 481.
  • 22. Caridis P. A., Frieze P. A., Flexural-torsional elasto-plastic buckling analysis of stiffened plating using dynamic relaxation. Part 2: Comparison with test results and other formulations, Thin- Walled Struct., 7, 1989, 37 - 72.
  • 23. Caridis P. A., Elasto-plastic tripping in flatbar-stiffened plates under uniform pressure, Trans. RINA, 137, 1995, 117-132.
  • 24. Chalmers D. W., Smith C. S., The ultimate longitudinal strength of ship hull, Proc. 5th Int. Symp. Pract. Design of Ships and Mobile Units, 1992, 2.745 - 2.763.
  • 25. Chatterjee S., Dowling P. J., The design of box girder compression plates under combined in- plane and lateral loading, Proc. Int. Symp. on Steel Plated Structures, Crosby Lockwood Staples, London, 1977, 743-763.
  • 26. Chen Y. K., Kutt L. M, Piaszczyk C. M., Bieniek M. P., Ultimate strength of ship structures, Trans. SNAME, 91, 1983, 149 - 168.
  • 27. Conci A., Gattass M., Natural approach for thin-walled beam-columns with elastic-plasticity, Int. J. Numer. Meth. Engng, 29, 1990, 1653 - 1679.
  • 28. Crisfield M. A., A fast incremental/iterative solution procedure that handles "snap-through". Computers and Structures, 13, 1981, 55 - 62.
  • 29. Cui W., Mansour A. E., Effects of welding distortions and residual stresses on the ultimate strength of long rectangular plates under uniaxial compression, Marine Struct., 11, 1998, 251-269.
  • 30. Cui W., Wang Y., Pedersen P. T., Strength of ship plates under combined loading, Marine Struct., 15, 2002, 75-97.
  • 31. Damonte R., Figari M., Porcari R., Ultimate bending moment of the ship hull girder. Int. Shipbuild. Progr., 44, 1997, 299 - 319.
  • 32. Danielson D. A., Cricelli A. S., Frenzen C. L., Vasudevan N., Buckling of stiffened plates under axial compression and lateral pressure. Int. J. Solids Struct., 30, 1993, 545 - 551.
  • 33. Danielson D. A., Kihl D. P., Hodges D. H., Tripping of thin-walled plating stiffeners in axial compression, Thin-Walled Struct., 10, 1990, 121 - 142.
  • 34. Dean J. A., Dowling P. J., Ultimate load tests on three stiffened plates under combined in-plane and lateral loading, Proc. Int. Symp. on Steel Plated Structures, Crosby Lockwood Staples, London, 1977, 743-763.
  • 35. Deb A., Booton M., Finite element models for stiffened plates under transverse loading, Comp. Struct., 28, 1988,361 -372.
  • 36. DIN EN 10067, Warmgewalzter Wulstflachstahl - Maße, Grenzabmaße und Formtoleranzen; Deutsche Fassung EN 10067: 1996, Deutsches Institut für Normung e. V.
  • 37. Dow R. S., Testing and analysis of 1/3-scale welded steel frigate model, Proc. Int. Conf. on Adv. in Marine Struct. ARE, Dunfirmline, 1991, 749 - 773.
  • 38. Dwight J. B., Little G. H., Stiffened steel compression flanges - a simpler approach, Struct. Engineer, 54A, 1976, 501 - 509.
  • 39. Endo H., Tanaka Y., Aoki G., Inoue H., Yamamoto Y., Longitudinal strength of the fore body of ships suffering from slamming, J. Soc. Naval Arch, of Japan, 163, 1988, 322-333 (w jez. japońskim).
  • 40. Fafard M., Beaulieu D., Dhatt G., Buckling of thin walled members by finite element method, Comp. Struct., 25, 1987, 183 - 190.
  • 41. Faulkner D., A review of effective plating for use in the analysis of stiffened plating in bending and compression, J. Ship Res., 19, 1975, 1-17.
  • 42. Faulkner D., Adamchak J. C., Snyder G. J., Vetter M. F., Synthesis of welded grillages to withstand compression and normal loads, Comp. Struct., 3, 1973, 221 - 246.
  • 43. Faulkner D., Compression tests on welded eccentrically stiffened plate panels, Proc. Int. Symp. on Steel Plated Structures, Crosby Lockwood Staples, London, 1977, 1977, 581 - 617.
  • 44. Faulkner J. A., Clarke J. S., Smith C. S., Faulkner D., The loss of HMS COBRA - a reassessment, Trans. RINA, 127, 1984, 125-151.
  • 45. Frieze P. A., Lin Y. T., Ship Longitudinal Strength Modeling for Reliability Analysis, Proc. SNAME Symp. '91 on Marine Struct. Inspection, Maintenance and Monitoring, Arlington, Virginia, 1991, III.C. p. 1-20.
  • 46. Fujikubo M., Yao T., Elastic local buckling strength of stiffened plate considering plate/stiffener interaction and welding residual stress. Marine Struct., 12, 1999, 543 - 564.
  • 47. Fujikubo M., Kaeding P., New simplified approach to collapse analysis of stiffened plates. Marine Struct., 15, 2002, 251-283.
  • 48. Ge H., Usami T., Ultimate strength of steel outstands in compression, J. Struct. Engng, 122, 1996, 573-578.
  • 49. Guedes Soares C., Soereide T. H., Behaviour and design of stiffened plates under predominantly compressive loads, Int. Shipbuild. Progress, 30, 1983, 13 - 17.
  • 50. Guedes Soares C., Parunov J., Structural reliability of a Suezmax oil tanker designed according to new joint tanker project rules, Proc. 25th Int. Conf. on Offshore Mechanics and Arctic Engng, ASME, 2006.
  • 51. Guedes Soares C., Garbatov Y., Reliability of maintained ship hulls subjected to corrosion, J. Ship Research, 40, 1996, 235 - 243.
  • 52. Guedes Soares C., Garbatov Y., Reliability assessment of maintained ship hulls with correlated corroded elements, Marine Struct., 10, 1997, 629 - 653.
  • 53. Guedes Soares C., Teixeira A. P., Structural reliability of two bulk carriers designs, Marine Struct., 13, 2000, 107-128.
  • 54. Guedes Soares C., Teixeira A. P., Luis R. M., Quesnel T., Nikolov P. I., Steen E., Khan I. A., Toderan C., Olaru V. D., Bollero A., Taczała M., Effect of the shape of localized imperfections on the collapse strength of plates, Proc. Conf. Maritime Transportation and Exploitation of Ocean and Coastal Resources, Taylor & Francis Group, London, 2005, 429 - 438.
  • 55. Guedes Soares C., Gordo J. M., Compressive strength of rectangular plates under biaxial load and lateral pressure, Thin-Walled Struct., 24, 1996, 231 -259.
  • 56. Gunnlaugson G. A., Pedersen P. T., A finite element formulation for beams with thin-walled cross-sections, Comp. Struct., 15, 1982, 691 - 699.
  • 57. Gordo J. M., Guedes Soares C., Interaction equation for the collapse of tankers and containerships under combined bending moments., J. Ship Research, 41, 1997, 230 - 240.
  • 58. Gordo J. M., Guedes Soares C. G., Approximate load shortening curves for stiffened plates under uniaxial compression, Proc. Conf. Integrity of Offshore Structures, Glasgow, 1993, 189-211.
  • 59. Gordo J. M., Guedes Soares C., Approximate method to evaluate the hull girder collapse strength. Marine Struct., 9, 1996, 449 - 470.
  • 60. Grondin G. Y., Elwi A. E., Cheng J.J.R., Buckling of stiffened steel - a parametric study, J. Construct. Steel Research, 50, 1999, 151-175.
  • 61. Hansen A. M., Strength of midship sections, Marine Struct., 9, 1996,471 -494.
  • 62. Höglund T., Shear buckling resistance of steel and aluminium plate girders, Thin-Walled Struct., 29,1997,13-30.
  • 63. Holopainen T. P., Finite element free vibration analysis of eccentrically stiffened plates, Comp. Struct., 56, 1995,993-1007.
  • 64. Horne M. R., Narayan R., Design of axially loaded steel plates, J. Str. Div., ASCE, 103, 1977, 2243 - 2257.
  • 65. Horne M. R., Narayan R., Ultimate strength of stiffened panels under uniaxial compression. Proc. Int. Symp. on Steel Plated Structures, Crosby Lockwood Staples, London, 1977, 1 - 23.
  • 66. HuY., Jin X., Chen B., A finite element model for static and dynamic analysis of thin-walled beams with assymetric cross-sections, Comp. Struct., 61,1996, 897 - 908.
  • 67. Hu Y., Chen B., Limit state of torsion of ship hulls with large hatch openings, J. Ship Research, 45, 2001, 95- 102.
  • 68. Hu Y., Zhang A., Sun J., Analysis on the ultimate longitudinal strength of a bulk carrier by using a simplified method, Marine Struct., 14, 2001, 311 - 330.
  • 69. Hu Y., Sun J., An approximate method to generate average stresses for rectangular plates under uniaxial compression in ship structures. Marine Struct., 12, 1999, 585 - 603.
  • 70. Hu S. Z., Chen Q., Pegg N., Ziemmerman T. J. E., Ultimate collapse tests of stiffened-plate ship structural units. Marine Struct., 10, 1997, 587 - 610.
  • 71. Hu Y., Chen B., Sun J., Tripping of thin-walled stiffeners in the axially compressed stiffened panel with lateral pressure, Thin-Walled Struct., 37, 2000, 001 - 026.
  • 72. Hu S. Z., Jiang L., A finite element simulation of the test procedure of stiffened panels, Marine Struct, 11, 1998, 75-99.
  • 73. Hughes O. F., Ship Structural Design, The Society of Naval Architects and Marine Engineers, Jersey City, New Jersey, 1988.
  • 74. Hughes O. F., Ma M., Elastic tripping analysis of asymmetrical stiffeners, Comp. Struct., 60, 1996, 369-389.
  • 75. Jastrzębski T., Sekulski Z., Taczała M., Badania wskaźnika niezawodności konstrukcji statków towarowych w granicznych portowych stanach ładunkowych, Mat. III Konf. Jakość-Niezawodność-Bezpieczeństwo, Rozwój Maszyn Pokładowych i Techniki Przeładunków, Międzyzdroje 11 - 13.06.97.
  • 76. Jiang W., Bao G., Roberts J. C., Finite element modeling of stiffened and unstiffened orthotropic plates, Comp. Struct., 63, 1997, 105 - 117.
  • 77. John W. G., On the strength of iron ship, Trans. Inst. Naval Arch., 15, 1874, 74-93.
  • 78. Jönsson J., Distortional warping functions and shear distributions in thin-walled beams, Thin-Walled Struct., 33, 1999, 245 - 268.
  • 79. Jönsson J., Distortional theory of thin-walled beams, Thin-Walled Struct., 33, 1999, 269 - 303,
  • 80. Jönsson J., Determination of shear stresses, warping functions and section properties of thin-walled beams using finite elements, Comp. Struct., 68, 1998, 393 - 410.
  • 81. Katori H., Consideration of the problem of shearing of thin-walled beams with arbitrary cross-sections, Thin-Walled Struct., 39, 2001, 671 - 684.
  • 82. Kim Y. Y., Kim J. H., Thin-walled multicell beam analysis for coupled torsion, distortion, and warping deformations, Trans. ASME, 68, 2001, 260 - 269.
  • 83. Kim N. I., Kim M. Y., Exact dynamic/static stiffness matrices of non-symmetric thin-walled beams considering coupled shear deformation effects, Thin-Walled Struct., 43, 2005, 701 - 734.
  • 84. Kmiecik M., Wpływ odkształceń wstępnych na wytrzymałość osiowo-ściskanych płyt prostokątnych, Politechnika Gdańska, Instytut Mechaniki i Podstaw Konstrukcji Maszyn, Gdańsk, 1970 (rozprawa doktorska).
  • 85. Kmiecik M., The load-carrying capacity of axially loaded longitudinally stiffened plate panels having initial deformations, SFI rapport R-80, Skipsteknisk Forskningsinstitutt Trondheim, 1970.
  • 86. Kmiecik M., Behaviour of axially loaded simply supported long rectangular plates having initial deformations, SFI rapport R-84, Skipsteknisk Forskningsinstitutt Trondheim, 1971.
  • 87. Kmiecik M., Problemy związane z oceną nośności granicznej kadłubów okrętów, Bud. Okr., 4, 1987, 151-155.
  • 88. Kmiecik M., Nośność graniczna kadłuba okrętu. Technika Morska, 1, 1989, 47 - 64.
  • 89. Kmiecik M., Metody rozwiązywania równań nieliniowej teorii płyt. Prace Naukowe Politechniki Szczecińskiej nr 162, Szczecin, 1981.
  • 90. Kmiecik M., Jastrzębski T., Kuźniar J., Statistics of ship plating distortions. Marine Structures, 8, 1994, 119- 132.
  • 91. Kobayashi M., Kuramoto Y., Mizuno H., Design study on longitudinal strength of a 164-cabin cruise ship in waves, Trans. RINA, 1990, 153 - 161.
  • 92. Koko T. S., Olson M. D., Non-linear analysis of stiffened plates using super-elements, Int. J. Num. Meth. Engng, 31, 1991, 319-343.
  • 93. Kutt L. M., Piaszczyk C. M., Chen Y. K., Lin D., Evaluation of the longitudinal ultimate strength of various ship hull configurations, Trans. SNAME, 93, 1985, 33 - 53.
  • 94. Kwak H. G., Kim D. Y., Lee H. W., Effect of warping in geometric nonlinear analysis of spatial beams, J Construct. Steel Research, 57, 2001, 729 - 751.
  • 95. Lang D. W., Warren W. G., Structural strength investigation of destroyer Albuera, Trans. Inst. Naval Arch., 94, 1952, 243 - 286.
  • 96. Li L.-Y., Bettess P., Buckling of stiffened plates and design of stiffeners, Int. J. Pres. Ves. Piping, 74, 1997, 177- 187.
  • 97. Lin Y. T., Frieze P. A., Ultimate Longitudinal Strength Of The Ship's Hull Girder, Report no NAOE-82-34, Department Of Naval Architecture and Ocean Engineering, University of Glasgow, 1982.
  • 98. Lin W. Y., Hsiao K. M., More general expression for torsional warping of a thin-walled open- section beam, Int. J. Mech. Sci., 45, 2003, 831 - 849.
  • 99. Louca L. A., Harding J. E., Torsional buckling of outstands in longitudinally stiffened panels, Thin-Walled Struct., 24, 1996, 211 - 229.
  • 100. Maestro M., Marino A., An assessment of the structural capacity of damaged ships: the plastic approach in longitudinal unsymmetrical bending and the influence of buckling, Int. Shipb. Prog., 36, 1989, 255-265.
  • 101. Mansour A. E., Lin Y. H., Paik J.K., Ultimate strength of ships under combined vertical and horizontal moments, Proc. 6th Int. Symp. Pract. Design of Ships and Mobile Units, The Society of Naval Architects of Korea, 1995, 2.844 - 2.856.
  • 102. Mansour A. E., Yang J. M., Thayamballi A., An experimental investigation of ship hull ultimate strength, Trans. SNAME, 98, 1990, 411 - 439.
  • 103. Mukherjee A., Mukhopadhyay M., Finite element free vibration of eccentrically stiffened plates, Comp. Struct., 30, 1988, 1303-1317.
  • 104. Mukhopadhyay M., Stiffened plate plane stress elements for the analysis of ships' structures, Comp. Struct., 13, 1981, 563-573.
  • 105. Mukhopadhyay M., Satsangi S. K., Isoparametric stiffened plate bending element for the analysis of ships' structures, Trans. RINA, 126, 1984, 144-151.
  • 106. Mukhopadhyay M, Satsangi S. K., Mukherjee A., A new isoparametric plate element for the analysis of ship structures, Int. Shipbuild. Progr., 37, 1990, 79 - 117.
  • 107. Murray N. W., Buckling of stiffened panels loaded axially and in bending. Struct. Engineer, 51, 1973, 285-301.
  • 108. Murray N. W., Analysis and design of stiffened plates for collapse load. Struct. Engineer, 53, 1975, 153- 158.
  • 109. Nishihara A. C., Ultimate longitudinal strength of midship cross section, Naval Arch. and Ocean Engng, 22, 1984, 200-214.
  • 110. Nitta A., Arai H., Magaino A., Basis of IACS unified longitudinal strength standard. Marine Struct., 5, 1992, 1-21.
  • 111. Ostapenko A., Strength of ship hull girders under moment, shear and torque, Proc. SSC-SNAME Symp. '81 on Extreme Loads Response, Arlington, Virginia, 1981, 149 - 166.
  • 112. Ostergaard C., Dogliani M., Guedes Soares C., Parmentier G., Pedersen P. T., Measures of model uncertainty in the assessment of primary stresses in ship structures, Marine Struct., 9, 1996, 427-447.
  • 113. Paik J.K., Lee D. H., Ultimate longitudinal strength-based safety and reliability assessment of ship's hull girder, J. Soc. Naval Arch, of Japan, 168, 1990, 395 - 407.
  • 114. Paik J.K., Ultimate strength-based safety and reliability assessment of ship's hull girder (2nd report - stiffened hull structure), J. Soc. Naval Arch. of Japan, 169, 1991, 403 - 414.
  • 115. Paik J. K., Kim D. H., Bong H. S., Kim M. S., Han S. K., Deterministic and probabilistic safety evaluation for a new double-hull tanker with transverseless system, Trans. SNAME, 100, 1992, 173-198.
  • 116. Paik J.K., Hull collapse of an aging bulk carrier under combined longitudinal bending and shearing force, Trans. RINA, 136, 1994, 217 - 228.
  • 117. Paik J.K., Advanced idealized structural elements considering both ductile-collapse and excessive tension-deformation, Technical Report No. PNUNA-SE-30, Department of Naval Architecture, Pusan, 1993.
  • 118. Paik J. K., Mansour A. E., A simple formulation for predicting the ultimate strength of ships, J. Marine Sci. and Tech., 1, 1995, 52 - 62.
  • 119. Paik J. K., Thayamballi A. K., Che J. S., Ultimate strength of ship hulls under combined vertical bending, horizontal bending, and shearing forces, Trans. SNAME, 104, 1996, 31 - 59.
  • 120. Paik J. K., Kim D. H., Bong H. S., Kim M. S., Han S. K., Ship hull ultimate strength reliability considering corrosion, J. Ship Research, 42, 1998, 154 - 165.
  • 121. Paik J. K., Thayamballi A. K., Lee W. H., A numerical investigation of tripping, Marine Struct., 11, 1998, 159- 183.
  • 122. Paik J. K., Thayamballi A. K., Park Y. E., Local buckling of stiffeners in ship plating, J. Ship Research, 42, 1998, 56-67.
  • 123. Paik J. K., Thayamballi A. K., Kim D. H., An analytical method for the ultimate compressive strength and effective plating of stiffened panels, J. Construct. Steel Research, 49, 1999, 43-68.
  • 124. Paik J. K., Hughes O. F., Mansour A. E., Advanced closed-form ultimate strength formulation for ships, J. Ship Research, 45, 2001, 111 - 132.
  • 125. Paik J. K., Thayamballi A. K., Terndrup Pedersen P., Park Y. I., Ultimate strength of ship hulls under torsion, Ocean Engng, 28, 2001, 1097 - 1133.
  • 126. Paik J. K., Thayamballi A. K., Lee S. K., Kang S. J., A semi-analytical method for the elastic-plastic large deflection analysis of welded steel or aluminum plating under combined in-plane and lateral pressure loads, Thin-Walled Struct., 39, 2001, 125 - 152.
  • 127. Paik J. K., Kim B. J., Ultimate strength formulations for stiffened panels under combined axial load, in-plane bending and lateral pressure: a benchmark study, Thin-Walled Struct., 40, 2002, 45 - 83.
  • 128. Paik J. K., Thayamballi A. K.., An experimental investigation on the dynamic ultimate compressive strength of ship plating, Int. J. Impact Engng., 28, 2003, 803 - 811.
  • 129. Paik J. K.., Thayamballi A. K.., Ultimate limit state design of steel-plated structures, John Wiley and Sons, West Sussex, 2003.
  • 130. Park S. W., Fujii D., Fujitani Y., A finite element analysis of discontinuous thin-walled beams considering nonuniform shear warping deformation, Comp. Struct., 65, 1997, 17-27.
  • 131. Pedersen P. T., Beam theories for torsional-bending response of ship hulls, J. Ship Research, 35, 1991, 254-265.
  • 132. Pedersen P. T., A beam model for the torsional-bending response of ship hulls, Trans. RINA, 125, 1983, 171 - 182.
  • 133. Pittaluga A., Recent development in the theory of thin-walled beams, Comp. Struct., 9, 1978, 69 - 79.
  • 134. Qi E., Cui W., Wan Z., Comparative study of ultimate hull girder strength of large double hull tankers, Marine Struct., 18, 2005, 227 - 249.
  • 135. Rahman M. K., Chowdhury M., Estimation of ultimate longitudinal bending moment of ships and box girders, J. Ship Research, 40, 1996, 244 - 257.
  • 136. Reckling K. A., Behaviour of box girders under bending and shear. Proc. ISSC'97, Vol. 2, II.2.46-II.2.49, 1979.
  • 137. Ronalds B. F., Local buckling interaction between plating and attached stiffeners, Struct. Eng., 67, 1989, 291-299.
  • 138. Rules for the Classification of Steel Ships, Bureau Veritas, Paris, 2007.
  • 139. Rules and Regulations for the Classification of Ships, Lloyd's Register of Shipping, 2006.
  • 140. Rules for Building and Classing Steel Vessels (2007), American Bureau of Shipping, ABS Plaza, Houston, 2006.
  • 141. Rules for Classification and Construction of Seagoing Ships, Germanischer Lloyd, Hamburg, 2007.
  • 142. Rules for Classification of Ships, Det Norske Veritas, 2007.
  • 143. Rules for the Classification of Ships, Registro Italiano Navale, 2007.
  • 144. Przepisy budowy i klasyfikacji statków morskich, Polski Rejestr Statków, Gdańsk, 2006
  • 145. Guidelines for hull girder ultimate strength assessment, Nippon Kaiji Kyokai, 2003.
  • 146. Common Structural Rules for Bulk Carriers, International Association of Classification Societies, 2006.
  • 147. Common Structural Rules for Double Hull Oil Tankers, International Association of Classification Societies, 2006.
  • 148. Rutherford S. E., Caldwell J. B. Ultimate longitudinal strength of ships - a case study, Trans. SNAME, 98, 1990, 441 - 471.
  • 149. Requirements concerning strength of ships, Req. 2007, International Association of Classification Societies, 2007.
  • 150. Rigo P. A., Moan T., Frieze P. A., Chryssanthopoulos M., Benchmarking of ultimate strength predictions for longitudinally stiffened panels, Proc. 6th Int. Symp. Pract. Design of Ships and Mobile Units, The Society of Naval Architects of Korea, 1995, 2.869 - 2.882.
  • 151. Saadé K., Warzée G., Espion B., Modeling distortional shear in thin-walled elastic beams, Thin-Walled Struct., 44, 2006, 808 - 821.
  • 152. Samanta A., Mukhopadhyay M., Finite element static analysis of stiffened shells, Applied Mech. Engng, 3, 1998, 55 - 87.
  • 153. Satsangi S. K.., Structural analysis of ships' stiffened plate in plane stress, J. of Inst. of Naval Arch., 1984,67-82.
  • 154. Satsangi S. K., Ray C., Structural analysis of ships' stiffened plate panels in bending, Int. Shipbuild. Progr., 45, 1998, 181 - 195.
  • 155. Shakourzadeh H., Guo Y. Q., Batoz J.-L., A torsion bending element for thin-walled beams with open and closed cross sections, Comp. Struct., 55, 1995, 1045 - 1054.
  • 156. Shanmugam N. E., Arockiasamy M., Local buckling of stiffened plates in offshore structures. J. Construct. Steel Research, 38, 1996, 41 - 59.
  • 157. Sheikh I. A., Grondin G. Y., Elwi A. E., Stiffened steel plates under combined compression and bending, J. Construct. Steel Research, 59, 2002, 911 - 930.
  • 158. Sheikh I. A., Grondin G. Y., Elwi A. E., Stiffened steel plates under uniaxial compression, J. Construct. Steel Research, 58, 2002, 1061 - 1080.
  • 159. Sinha G., Sheikh A. H., Mukhopadhyay M., A new finite element model for the analysis of arbitrary stiffened shells. Finite Elements in Analysis and Design, 12, 1992, 241 -271.
  • 160. Smith C. S., Compressive strength of welded steel ship grillages. Trans. RINA, 117, 1975, 325-359.
  • 161. Smith C. S., Influence of local compressive failure on ultimate longitudinal strength of a ship's hull, Proc. Int. Symp. Pract. Design in Shipbuilding, Tokyo, 1977, 73 - 79.
  • 162. Smith C. S., Anderson N., Chapman J. C., Davidson P. C., Dowling P. J., Strength of stiffened plating under combined compression and lateral pressure. Proc. RINA Spring Meeting, 1991.
  • 163. Steen E., Buckling of stiffened plates under combined loads - ABAQUS analyses, Report 95-0445, Det Norske Veritas, 1993.
  • 164. Steen E., Byklum E., Vilming K. G., Østvold T. K., Computerized buckling models for ultimate strength assessment of stiffened ship hull panels. Proc. 6th Int. Symp. Pract. Design of Ships and Mobile Units, Travemünde/Lübec, 2004, 235 - 242.
  • 165. Sugimura T., Nozaki M., Suzuki T., Destructive experiment of ship hull model under longitudinal bending, J. Soc. Naval Arch. of Japan, 119, 1966, 209 - 220 (w jęz. japońskim).
  • 166. Sun H.-H., Soares C. G., An experimental study of ultimate torsional strength of a ship-type hull girder with a large deck opening, Marine Struct., 16, 2003, 51 - 67.
  • 167. Taczała M., Analiza nieliniowa wyboczenia płyt i paneli okrętowych metodą elementów skończonych. Politechnika Gdańska, Wydział Budownictwa Lądowego, Gdańsk, 1995 (rozprawa doktorska).
  • 168. Taczała M., Influence of lateral loading on the ultimate capacity of ship hulls. Proc. 8th Symp. Stability of Structures, Zakopane, 1997, 271 - 276.
  • 169. Taczała M., Ultimate strength of ship hull in bending and shear using simplified approach, Marine Techn. Trans., 12, 2001, 261 -283.
  • 170. Taczała M., An approximate method for generation of stress-strain curve for plates subject to compression and shear, Marine Techn. Trans, 11, 2000, 245 - 261.
  • 171. Taczała M, Stiffened plate element based on Kirchhoff thin plate theory, Marine Technology Transactions, 9, 1998, 199 - 218.
  • 172. Taczała M., Banasiak W., Buckling of I-core sandwich panels, J. Theor. Appl. Mech., 42, 2, 2004, 335 - 348.
  • 173. Taczała M., Banasiak W., Orthogonally stiffened plate element and its application for analysis of ship structures, Marine Techn. Trans, 12, 2001, 285 - 306.
  • 174. Taczała M., Buczkowski R., Free vibrations of stiffened plates using finite element method, Arch. Civil Engng, XLIX, 3, 2003, 169 - 199.
  • 175. Taczała M., Jastrzębski T., Analysis of ultimate capacity of ship hulls with transversally stiffened plates, Arch. Civil Engng, XLV, 2, 1999, 357 - 368.
  • 176. Teixeira A. P., Soares C. G., Strength of compressed rectangular plates subjected to lateral pressure, J. Construct. Steel Research, 57, 2001, 491 - 516.
  • 177. Thompson P. A., Bettess P., Caldwell J. B., An isoparametric eccentrically stiffened plate bending element, Eng. Comput., 5, 1988, 110-116.
  • 178. Timoshenko S. P., Historia wytrzymałości materiałów, Arkady, Warszawa 1966.
  • 179. Timoshenko S. P., Gere J. M., Teoria stateczności sprężystej. Arkady, Warszawa, 1963.
  • 180. Toulios M., Caridis P. A., The effect of aspect ratio on the elastoplastic response of stiffened plates loaded in uniaxial edge compression, Comp. Struct., 80, 2002, 1317 - 1328.
  • 181. Ueda Y., Rashed S. M. H., Paik J. K., An incremental Galerkin method for plates and stiffened plates, Comp. Struct., 27, 1987, 147 - 156.
  • 182. Ueda Y., Rashed S. M. H., Paik J. K., Buckling and ultimate strength interaction in plates and stiffened panels under combined inplane biaxial and shearing forces, Marine Struct, 8, 1995, 1-36.
  • 183. Ueda Y., Rashed S. M. H., Paik J. K.., Plate and stiffened plate units of the idealised structural unit method - under in-plane loading, J. Soc. Naval Arch. of Japan, 156, 1984, 366-376 (w jęz. japońskim).
  • 184. Ueda Y., Yao T., The plastic node method: a new method of plastic analysis, Comput. Meths for Appl. Mech. in Eng., 34, 1982, 1089-1104.
  • 185. Valsgård S., Ultimate capacity of plates in transverse compression, Report 79 - 104, Det Norske Veritas, 1979.
  • 186. Valsgård S., Numerical design prediction of the capacity of plates in biaxial in-plane compression, Comp. Struct., 12, 1980, 729 - 739.
  • 187. Valsgård S., Jørgensen L., Bøe A., Thorkildsen H., Ultimate hull girder strength margins and present class requirements, Proc. SNAME, Symp. '91 on Marine Struct Inspection, Maintenance and Monitoring, Arlington, Virginia, 1991, B. 1 - 19.
  • 188. Vasta J., Lessons learnt from full-scale ship structural test, Trans. SNAME, 66, 1997, 165-243.
  • 189. Wang X., Jiao G., Moan T., Analysis of oil production ships considering load combination, ultimate strength and structural reliability. Trans. SNAME, 104, 1996, 3 - 30.
  • 190. Wang X., Moan T., Ultimate strength analysis of stiffened panels in ship subjected to biaxial and lateral loading, Int. J. Offshore Polar Engng, 7, 1997, 22 - 29.
  • 191. WiliamsF. W., Kennedy D., Butler R., Anderson M. S., VICONOPT: program for exact vibration and buckling analysis or design of prismatic plate assemblies, AIAA J., 29, 1991, 1927-1928.
  • 192. Yao T., Ultimate longitudinal strength of ship hull girder: historical review and state of the art, Int. J. of Offshore and Polar Engng, 9, 1999, 1 - 9.
  • 193. Yao T., Hull girder strength, Marine Struct., 16, 2003, 1-13.
  • 194. Zienkiewicz O. C., Metoda elementów skończonych, Arkady, Warszawa, 1977.
  • 195. Ziha K., Parunov J., Tusek B., The ultimate strength of the ship hull, Brodogradnja, 7, 1997, 29-41.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0049-0024
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.