PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Application of artificial neural nerworks in oxidation kinetic analysis of nanocomposites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study concerns the application of artificial neural networks in oxidation kinetic analysis of ceramic nanocomposites. The oxidation of the Ti-Si-C ceramic nanocomposite in dry air was studied. The size of the nanoparticles was determined by scanning electron microscopy (SEM). The gaseous oxidation products were analysed by mass spectroscopy (MS) while the solid oxidation products by X-ray diffraction (XRD). The kinetic analysis of the oxidation was based on the Coats-Redfern equation. The kinetic models were identified for the consecutive stages and then the A and E parameters of the Arrhenius equations were evaluated. Artificial neural networks were used at each step of the kinetic calculations.
Rocznik
Strony
21--28
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
autor
  • Institute of Chemistry and Environmental Protection, Szczecin University of Technology, al. Piastów 42, 71-065 Szczecin, Anna.biedunkiewicz@ps.pl
Bibliografia
  • 1. Strzelczak, A. (2008). Analysis of oxidation processes of selected ceramic nanocomposites in dry air. Unpublished doctoral dissertation, Szczecin University of Technology, Poland. (In Polish).
  • 2. Bykowszczenko, N. (2007). Identification of air contamination models in industrial regions. Unpublished doctoral dissertation, Szczecin University of Technology, Poland. (In Polish).
  • 3. Kamiński, W., Strumiłłom, P. & Toczek, E. (2005). Application of artificial intelligence systems in solving selected air protection problems. PAN, Łódź. (In Polish).
  • 4. Gajda, J.B. (2001). Prognoses and simulations versus economic decisions. Wydawnictwo Beck, Warszawa. (In Polish)
  • 5. Osowski, S. (1996). Neural networks in algorithmic approach. WNT, Warszawa. (In Polish).
  • 6. Tadusiewicz, R. (1993). Neural networks. Akademicka Oficyna Wydawnicza, Warszawa. (In Polish).
  • 7. Żurada, J., Barski, M. & Jędrych, W. (1996). Artificial neural networks. PWN, Warszawa. (In Polish).
  • 8. Piegat, S. (2003). Fuzzy modelling and control. EXIT, Warszawa. (In Polish).
  • 9. Straszko, J., Chrościechowska, J. & Stankiewicz, D. (2006). Analysis of thermal decomposition of NiSO4-6H2O using artificial neural networks. Inż. Chem. Proc. 27(1), 217-236. (In Polish).
  • 10. Straszko, J., Strzelczak, A. & Chrościechowska, J. (2005). Analysis of the decomposition process of CuSO4-5H2O under non-isothermal condition. Pol. J. Chem. Tech. 7 (2), 54-61.
  • 11. Biedunkiewicz, A., Strzelczak, A. & Chrościechowska, J. (2005). Non-isothermal oxidation of TiCx powder in dry air. Pol. J. Chem. Tech. 7(4), 1-10.
  • 12. Nazarov, A.A. & Muyukov, R.R. (2003). Nanostructured materials. In W.A. Goddart, D. W. Brenner, S.E. Lyshewski & G.J. Iafrate (Eds.), Handbook of nanoscience, engineering and technology (pp. 609-650). CRC Press LLC.
  • 13. Cushing, B.L., Kolesnichenko, V. L. & O'Connor, Ch. J.(2004). Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 104(9), 3893-946. DOI: 10.1002/chin.200447224.
  • 14. Wang, Z. L. (2000). Nanomaterials for nanoscience and nanotechnology. In Z. L. Wang (Ed.) Characterization of nanophase materials (pp. 1-11). Wiley-VCH Verlag GmbH.
  • 15. Gleiter, H. (2000). Nanostructured materials: basic concepts and microstructure. Acta Mat. 48(1), 1-29. DOI: 10.1016/S1359-6454(99)00285-2.
  • 16. Chung, D.D.L. (2001). Applied materials science. Chapman & Hall/CRC CRC Press LLC.
  • 17. Richerson, D.W. (2004). Advanced ceramic matarials. In J.K. Wessel (Ed.) Handbook of advanced materials (pp.65-88). John Willey & Sons, Inc., New Jersey.
  • 18. Pampuch, R. (2005). Contemporary ceramic materials. AGH- Uczelniane Wydawnictwo Naukowe, Kraków. (In Polish)
  • 19. Holmberg, K. & Matthews, A. (2001). Coatings tribology: properties, techniques and application in engineering. Elsevier, New York.
  • 20. Bunshah, R.F. (2001). Handbook of hard coatings; Deposition technologies, properties and application. Noyes Publications,. Park Ridge, New York.
  • 21. Biedunkiewicz, A., Gordon, N., Straszko, J. & Tamir, S. (2007) Kinetics of thermal oxidation of titanium carbide and its carbon nano-composites in dry air atmosphere. J. Therm. Anal. Cal. 88(3), 717-722. DOI: 10.1007/s10973-006-8222-x.
  • 22. Coats, A.W. & Redfern, J.P. (1964). Kinetic parameters from thermogravimetric data. Nature. 201, 68 -69. DOI: 10.1038/201068a0.
  • 23. Mc Culloch, W.S. & Pitts, W. (1943). A logical calculus of ideas immanent in nervous activity. Bull. Math. Biol. 5(4), 115 -133. DOI: 10.1007/BF02478259.
  • 24. Widrow, B. & Hoff, M. (1960). Adaptive switching circuits. In Proceedings of. IRE WESCON Covention Record, Part 4 (pp. 96-104).
  • 25. Hopfield, J. (1982). Neural networks and physical systems with emergent collective computational abilities, Proc. Natl. Acad. Sci. U S A. 79 (8), 2554-2558. DOI: 10.1073/pnas.79.8.2554.
  • 26. Cover, T. (1965). Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Trans. Elec. Comp. 14, 326-334. DOI: 10.1109/PGEC.1965.264136.
  • 27. STATISTICA- system description, Statsoft. Retrieved November 1, 2007, from http://www.statsoft.pl
  • 28. STATISTICA NEURAL NETWORKSTM PL., Introduction to neural networks, StatSoft. Retrieved November 1, 2007, from http://www.statsoft.pl
  • 29. STATISTICA NEURAL NETWORKSTM PL., Problem guide, StatSoft. Retrieved November 1, 2007, from http://www.statsoft.pl
  • 30. STATISTICA NEURAL NETWORKSTM PL, StatSoft. Retrieved November 1, 2007, from http://www.statsoft.pl
  • 31. Shimada, S. & Kozeki, M. (1992). Oxidation of TiC at low temperatures. J. Mat. Sci. 27(7), 1869-1875. DOI: 10.1007/BF01107214.
  • 32. Shimada, S. (1996). A thermoanalytical study of oxidation of TiC by simultaneous TGA-DTA-MS analysis. J. Mat. Sci. 31(3), 673-677. DOI: 10.1007/BF00367884.
  • 33. Shimada, S. (2001). Interfacial reaction on oxidation of carbides with formation of carbon. Sol. St. Ionics. 141-142, 99-104. DOI: 10.1016/S0167-2738(01)00727-5.
  • 34. Sobczyk, K. (1996). Stochastic differential equations. WNT, Warszawa. (In Polish).
  • 35. Hien, T.D. (2003). Numerical analysis of stochastic systems. Prac. Nauk. Pol. Szcz. 579, 21-28. (In Polish)
  • 36. Biedunkiewicz, A. & Wróbel, R. (2004). The XRD study of the nanostructured TiC/C and TiN/C composites. Rev. Adv. Mat. Sci. 8, 69-72.
  • 37. Qian-Gang, F., He-Jun, L., Xiao-Hong, S., Ke-Zhi, L., Jian, W. & Min, H. (2006). Oxidation protective glass coating for SiC coated carbon/carbon composites for application at 1773 K. Mat. Lett. 60(3), 431-434. DOI: 10.1016/j.matlet.2005.09.006.
  • 38. Lin, Y.J. & Chen, L.J. (2000). Oxidation of SiC powders in SiC/alumina/zirconia compacts. Ceram. Int. 26(6), 593-598. DOI: 10.1016/S0272-8842(99)00102-9.
  • 39. Kozin, F. (1988). The method of statistical linearization for non-linear stochastic vibration in nonlinear stochastic dynamic engineering system. Springer-Verlag, Berlin.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0049-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.