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3D FEM MODEL OF THE INDUCTION MACHINE  

– CALCULATING AXIAL FLUX 

 
MODEL MES 3D MASZYNY INDUKCYJNEJ  

– OBLICZANIE STRUMIENIA OSIOWEGO 

 
Abstract: A 3D model reflecting entire internal structure of the asynchronous machine using finite elements 

method, has been presented here. Nodal finite elements have been used to approximate scalar potential and 

edge finite elements to approximate vector magnetic potential. This model includes both the skew of the rotor 

bars as well cross current flowing through the rotor iron laminates. The three-phase stator winding is supplied 

with four-lead mains voltage. The axial flux was calculated by integration of the vector potential around the 

shaft of the machine. Plots were calculated following the switching on the machine at various speeds. Bar as 

well as ring fractures were simulated. The simulation results have been confirmed by the theoretical anticipa-

tions. 

1. Introduction 

The axial flux in the rotating electric machines 

is the flux of the vector of the magnetic induc-

tion flowing through the plane perpendicular to 

the axis of the rotor rotation, bounded on the 

outside by the shadow of the windings, which 

makes the field forces to align axially. Its major 

portion flows through the shaft of the machine 

and then through the bearings. The axial flux is 

a main flux in the unipolar machines, and in the 

machines with essentially radial direction of 

magnetisation, it occurs most frequently due to 

internal electromagnetic asymmetry of the ma-

chine. There are also some phenomena relating 

to the axial flux in the electric machine. These 

are e.g. voltages in the motor shaft, which may 

manifest themselves as current flowing through 

the shaft and then the machine bearings. These 

phenomena may also occur due to magnetic 

asymmetry, as well as capacities found in the 

machine at supplying with converters. From the 

electric point of view, the sources, which make 

them to occur are „perpendicular” to the axial 

flux stimuli. 

Currents flowing through the bearings may lead 

to bearing failure, and the axial flux may gener-

ate eddy currents and bearing heating. This pa-

per will discuss only axial flux. 

Finding the correct axial flux is only possible 

by field calculations, and practically only by 3D 

FEM. It is useful however to define the prereq-

uisites necessary for developing axial flux in 

simplified analysis [4], [6]. If axial flux uφ  is  

 
 

due to L – number of facially connected circuits 

of the elementary machine, i.e. coils and squir-

rel cage loops, 
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The symbols are used as follows: 

kk zi – ampere-turns of k-th facial connection or 

current in the squirrel cage sector (including 

current directions), 
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 – airgap permeance 

within the elementary circuit kk ϑγ − , 

kk ϑγ + , 

δz(α) – substitute airgap attributed to the point 

located on the circumference of the stator at α 

coordinate, resulted from the analysis of the 

magnetic field in the airgap of the machine. 

cu – factor of proportionality depending on the 

machine dimensions 

Thus to develop the axial flux, the 

0
1

≠Λ∑
=

L

k

kkk zi  is prerequisite. One can draw 

the following conclusions from this formula: 

1) The unipolar flux will be equal to zero once 

e.g. each facial connection repeats an even 

number, at equal number of elementary cir-

cuits, at positive and negative current di-

rection. 
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2) Fulfilling the prerequisite formulated in the 

paragraph 1, but at non-homogeneous air-

gap, may make the axial flux to develop. 

3) Another conclusion is a notion, that the ax-

ial flux level on both sides of the machine 

might not be equal. Fractured squirrel cage 

ring on one side of the rotor will make the 

axial flux to increase on this side of the ma-

chine, while leaving some insignificant 

change on the other. 
 

 

Fig. 1.  3D FEM model of the asynchronous 

machine 

2. 3D FEM model of asynchronous ma-

chine 

Iron laminates of the machine rotor, was inclu-

ded by magnetic reluctivity tensor of the lami-

nates ν. Material conductivity tensor γ was also 

included. Thus the model includes the cross 

currents in rotor teeth and yoke, flowing be-

tween squirrel cage bars through iron as well as 

currents in copper in squirrel cage bars and 

rings. Cubic elements were deformed accord-

ingly to assure correct form of the induction 

motor. Such procedure appeared to be neces-

sary, as the authors have no procedure for 

automatic generation  of the 3D mesh of finite 

elements at their disposal. As the 3D modelling 

requires large number of finite elements, there 

may be some inconveniences as for the com-

putational speed, and program/computer capa-

bilities, and operating memory usage. These are 

serious limitations, in spite of that the sparse 

matrix was used. Thus the cross-sections of 

non-filleted shape, were assumed. This made it 

easy to fill the machine elements by cubic ele-

ments. Filling the cube elements gaps with tet-

rahedra that followed acc. to Fig. 2 was easy 

programming task. This is shown in Fig. 2. It 

made it possible to include the skew of the rotor 

squirrel cage bars by selecting appropriately the 

magnitude of bar conduction tensor or iron in 

tetrahedra on the left or right side of the cube 

[1, 2, 3]. 
 

 

Fig. 2.  a) Partitioning of utilised cubic element 

into 6 tetrahedral elements. b) 2 row approxi-

mation of scalar potential in tetrahedron 

The rotor shaft, stator and rotor laminates in-

cluding slots, squirrel cage bars and rings as 

well as the housing with bearing regions (Fig. 

1), were modelled by these finite elements. The 

3D model was using vector potential A
r
 and ad-

ditionally scalar potential φ in the conducting 

regions, e.g. laminates, rotor cage bars and 

rings. The magnetic induction is calculated 

from the formula of ArotB
rr

= . It is assumed that 

the winding current density of the stator 3 

phases, can be expressed by the formula of 

ii TrotJ 00

rr
=  introduced additionally for every 

i-th phase of the vector of iT0

r
. Thus the equ-

ation for the 1st Maxwell law for the non-con-

ducting area Ωnieprz. can be expressed as: 

 0)( TrotArotrot
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=⋅υ , where ∑
=

=
3

1

00

i

iTT
rr

 

where υ is magnetic permeability tensor 

For the conductive areas, where eddy currents 

develop, the following formula is governing, 
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For the purpose of formula generalisation the 

following relation was included 
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By omitting rotation operator, the following 

formula for the eddy current density, induced in 
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the squirrel cage bars, rings and rotor laminates 

can be written: 
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We are using Ohm's law, which in the con-

ducting continuum of electric conductivity de-

scribed  by tensor of γ binds the current density 

J
r
 with electric field intensity E

r
. 

Additionally one has to include the sourceless-

ness of the current density, 0=Jdiv
r

 to get the 

equation system, which describes the electro-

magnetic field in the machine, 
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To approximate the scalar potential of φ, the 

tetrahedron local coordinate systems e
iL , with 

origins at tetrahedron apices (i=1,2,3,4), which 

are nodal elements [ ]eeee
i LLLLN 4321 ,,,= , were 

used. To approximate the vector potential edge 

finite elements were used. The i-th element of 

the tetrahedron edge with apices of i1 and i2 and 

of length of li, can be written as follows: 

i
e
i

e
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e
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e
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Thus the approximations one can write as: 
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i

iiN ϕϕ . 

The equations (2) have been brought to weak 

Galerkin formulation, by multiplying the equ-

ations by any variations of the potentials and 

then by integration along the entire volume of 

the machine. Linear equation system was 

solved eventually as: 
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There is no divergence 0=iNdiv
r

 in the base 

edge finite elements applied. Thus there is a 

singular matrix (with zero eigenvalues) in the 

resulting equation system. A typical equation of 

such type is the following one, ( ) 0JArotrot
rr

=⋅ν , 

which is solved by both A
r
, as well as 

ϕgradA+
r

, at any φ, as ( ) 0=ϕgradrot . Such 

equation system can be easily solved by itera-

tive methods, providing that, there are no ei-

genvectors corresponding to zero eigenvalues 

of the matrix, found on the right side of the 

equation system. This condition can be 

achieved by building the right side of the equa-

tion system with the same terms as the matrix 

of the system. In the case under consideration, 

these are terms of 
iNrot

r
, for which 

( ) 0=iNrotdiv
r

. This is the reason, which makes 

it possible to solve the discussed equation sys-

tem with iterative methods, e.g. with coupled 

gradients method, minimum residuum method, 

Chebyshev method, as well as with other meth-

ods. 

The system of equations (3) is a partial deriva-

tive system of independent variables, which are 

time t and the spatial coordinates  x, y, z. The 

asynchronous machine includes conducting and 

rotating elements. It is a rotor squirrel cage 

composed of bars and rings and the laminated 

rotor stack, which conduct cross currents. Den-

sity of eddy currents is expressed by 

















−−= ϕγ

dt

d
gradA

dt

d
J

rr
. This formula as well 

as the (3) used the total derivative 
dt

d  in place 

of partial time derivative of 
t∂
∂ . This is to 

underline the fact, that eddy currents follow 

rotor rotation. The magnetic vector potential A
r
, 

as well as the scalar potential φ in these for-

mula, has to be found for the points rotating 

with rotor. The same symbol (
dt

d ) was pre-

served also for the conducting stator laminae, 

although they do not rotate. 

There is non-conducting airgap and non-con-

ducting bearings, between fixed stator and ro-

tating rotor. Rotor rotation is simulated by de-

forming finite elements found in the airgap.  On 

the other hand the finite elements in stator, ro-

tor, shaft and housing are not subject to defor-

mation. The derivative of 
dt

d  („rotating” with 

rotor) influences only conducting continua, 

where the finite elements do not deform, so this 
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derivative does not influence the matrices [C], 

[D], [G] found in formula (3). They are of con-

stant values. One can say, that this derivative is 

alternating with these matrices. The applied fi-

nite elements method binds the independent 

variables [X] with mesh, i.e. with the environ-

ment and this is where the derivative of 
dt

d  acts 

upon. 

When trying to solve the circuits with coils 

which are coupled magnetically, as in an asyn-

chronous machine, by using the method de-

scribed above, one has to consider, that T0 vec-

tor can be written as: 

 ∑
=

⋅=
f

j

jj iTT

1

0

rr
, (4a) 

where ji  stands for current in j-th (j=1,..., f; f is 

the number of stator windings) winding, and jT
r
 

for the vector corresponding to this winding eg. 

0TT j

rr
= , when all the currents, save for the j-th 

one, equal to zero, and the j-th current is 1A. 

Then the 0T
r
 can be transferred from the right to 

the left side of the equation and new unknowns 

can be introduced, which are currents. Addi-

tional equations are coil voltage expressions, 

 jjjj uiR
dt

d
=⋅+Ψ , (5) 

where the flux of jΨ  is coupled with the j-th 

winding. This jΨ  flux can be written as: 

 ∫ ∫ ⋅=⋅=Ψ
V V

jjj dVArotTdVBT
rrrr

, 

where ∑
=

⋅=
g

i

ii NAA

1

rr
, where g is a number of edge 

unknowns of vector potentials. It can be seen, 

that this term appears (with coefficient accu-

racy) not only in this additional voltage for-

mula, but also in the main equations (3) (once 

the 0T
r
 was transferred to the right). 

The rotation of the rotor is included by the 

translation of the nodes located in the machine 

airgap, and associated tetrahedron deformation. 

Once the translation equals the tetrahedron edge 

length, the tetrahedron is brought back to its 

initial form, but both the nodes and edges at the 

rotor-to-airgap interface, are renumbered. Three 

layers of cubes and associated tetrahedra were 

considered. The torque, as well as the 3 compo-

nents of the forces acting on the rotor, were cal-

culated by Coulomb method from the layer of 

tetrahedra adjacent to the stator. The equation 

system (3, 5) was solved by implicit Crank-

Nicholson method [6]. As it includes the values 

of unknowns and matrices of the system for the 

final time of integration step, it is a stable 

method. It is also dictated by the assumed short 

time step of dt=0,00005 s. In the discussion 

presented here, a constant rotor speed or its 

change with time was assumed. If we wanted 

the program to calculate the speed changes with 

time, we would need to supplement it by me-

chanical equations. As the speed changes go 

much slower than electric processes, this me-

chanical equation is usually modelled by ex-

plicit Euler scheme. Once the discussed nu-

merical methods are applied into the system of 

equations (3, 5), a large system of linear equa-

tions are obtained with sparse matrix. One has 

to assure the symmetry of system matrix, as it 

makes it possible to use fast iterations. The 

majority of iterative procedures of solving lin-

ear equations, found in Matlab package, were 

tested against the computational speed. When 

applied to larger systems of equations, the pro-

cedures from the newer Matlab version, ap-

peared many times slower, than those from 

older versions.  To include the non-linear iron 

magnetisation characteristic, 3D Newton-Raph-

son iterative method is usually used. The pro-

gram presented here was using method of tan-

gents to magnetisation characteristic, also in 3D 

application. The relation of )( 00 BBHH
rrrr

−⋅+= υ  

was used here, where magnetic intensity 0H
r
 

and magnetic induction 0B
r
 are the initial values 

set on the magnetisation characteristic, and 

magnetic intensity H
r
 and induction B

r
 are the 

values found on the plane tangent to this char-

acteristic. Such relation was substituted in the 

first equation of the system (2) in place of  

Arot
r

 υ  

The magnetic permeability tensor υ is a sym-

metric one. The iron magnetisation characteris-

tic was assumed in the form of polynomial of 

H=h1B+h3B
3
+h9B

9
, where H and B are absolute 

values of magnetic intensity and magnetic in-

duction in iron respectively. At calculating the υ 

tensor for each finite element with magnetic 

non-linearity, it was assumed, that it is com-

posed of laminate separated by non-magnetic 

insulating layers. The filling ratio of laminated 

stack was assumed as iron area to entire stack 
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cross-section. This tensors could be also calcu-

lated from energy formulae. In the program dis-

cussed here, the Kirchhoff laws were directly 

applied into the laminated stack. The sparse 

matrix available in the Matlab  package, COO 

type was used to simulate entire problem. 

3. Calculation of the transient states by 

using 3D model of the asynchronous ma-

chine 

Asynchronous squirrel cage machine was mod-

elled with one pole pair of 12 stator teeth and 

14 rotor  bars of the such skew which corre-

sponds with 1 slot pitch of the stator.  

The results of the numerical simulations are 

shown in the plots below. 

 

 

Fig. 3.  Axial flux, a) machine free from dam-

age, b,c,d) fractured squirrel cage ring, speed 

a) ω=314 rad/s, b) ω=31.4  rad/s, c) ω=0, d) 

ω=31.4 rad/s (less winding turns per phase) 

The results shown in Fig. 3a indicate, that axial 

fluxes in the case of the machine free from 

damage are insignificant. The Figs. 3b, c, d, 

corresponding with fractured rotor squirrel cage 

on the one end of the machine, show marked 

increasing of these fluxes. Figs. 3b, d show, that 

axial fluxes increase more prominently on that 

end which is closer to the damaged region. 

From Fig. 3 one can find main pulsations of the 

axial flux versus speed. These pulsations agree 

well with gauged results and simplified theo-

retical analysis [5, 8, 9]. They are s ω0, where s 

is slip of a machine and ω0 is supply pulsation 

(the pole pair number p of the machine is 1). 
 

 

Fig. 4.  Very insignificant axial flux in the ma-

chine free from damage following switching on 

at speed of 300 rad/s 

 

 

Fig. 5.  Mains current in the asynchronous 

squirrel cage machine free from damage fol-

lowing switching on at speed of 300 rad/s 

 

 

Fig. 6.  Electromagnetic torque of the machine 

free from damage, as calculated for the layer 

adjacent to the stator and rotor (the results cor-

respond with each other) following switching 

on at the speed of 300 rad/s 



Zeszyty Problemowe – Maszyny Elektryczne Nr 80/2008 168

Figures 4 through 6 show the behaviour of the 

machine free from damage at higher speed of 

ω=300 rad/s. They show that there is a very mi-

nor axial flux magnitude. In contrast, when a 

ring segment is damaged, the axial flux in-

creases, but its pulsation would be minor, i.e. of 

14,15 rad/s. It would require long computations 

to get the precise time-domain courses. So to 

consider this phenomenon, calculations were 

made at ω=100 rad/s for the machine with 

fractured ring. The results are shown in Figs. 8 

through 10. To compare the magnitudes of axial 

fluxes which develop in the machine free from 

damage, Figure 7 was included showing the 

time-domain courses at 60 rad/s. 
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Fig. 7.  Axial fluxes in the machine free from 

damage at speed of 60 rad/s 

 

 

Fig. 8.  Axial flux on both sides of the squirrel 

cage at fractured squirrel cage ring and speed 

of  100 rad/s 

 

 

Fig. 9.  Mains current at fractured squirrel 

cage ring and speed of 100 rad/s 

 

 

Fig. 10.  Electromagnetic torque of the defec-

tive machine with fractured ring, as calculated 

for the layer adjacent to the stator and rotor 

(the results correspond with each other) fol-

lowing switching on at the speed of 100 rad/s 

The axial flux increases due to some deterio-

rated inter-laminar insulation in the stator e.g. 

in the range of one slot pitch. The stator lami-

nated stack damaged in such manner, may gen-

erate voltage in the  shaft of the machine, and 

voltage between the sides of the laminated sta-

tor stack in the area of damaged insulation, in-

crease axial flux in both shaft ends by the same 

value. This was shown by comparing a machine 

free from damage with one of damaged lami-

nated stack versus speed in Fig. 11. 
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Fig. 11.  Machine free from damage, a) axial 

fluxes, b) shaft voltage, c) voltages between 

sides of laminated stator stacks, d) assumed 

speed step 
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Fig.12  Damaged machine, a) axial fluxes, b) 

shaft voltage, c) voltages between sides of lami-

nated stator stacks in the area of damaged in-

ter-laminar insulation, d) assumed speed step 

The following numerical remarks can be made, 

based on the calculation results. The axial flux 

exhibits minor susceptibility to the deformation 

of the elements found in the airgap of the ma-

chine during rotation of the rotor. In contrast, 

the electromagnetic torque as calculated by 

Coulomb method as well as the forces acting on 

the rotor, are susceptible to this deformation. So 

to get more accurate calculations of the torque, 

it is necessary to increase the number of ele-

ments in the airgap of the machine. The elec-

tromagnetic torque in the layer found at the ma-

chine rotor, which does not deform at rotation, 

exhibits higher computational stability. 

To conform the results of calculations obtained 

in the process of calculations, experimental re-

search has been conducted for the motor of out-

put of 50 kW, 1500 rpm. Fig. 13 shows the 

shaft-coil voltages in the machine free from 

damage a) as well as with fractured ring seg-

ment b). The time-domain courses show high 

susceptibility of the axial flux to ring damage. 

Both the shaft-coil voltage magnitudes shown 

in Fig. 13 as well as the main pulsation, support 

the results obtained from the calculations for 

the axial flux. 
 

 

Fig. 13.  The measured voltage of one shaft-

coil: a) machine free from damage, b) crack of 

ring of cage 

4. Conclusions 

The numerical calculations as conducted by 3D 

FEM program, have confirmed the conclusions 

drawn from the theoretical studies [4], [6] as far 

the development of the axial flux in the electric 

machine is concerned. They also demonstrated 

how effective is the developed program at stu-

dying the dynamic properties of the electric 

machine. One can also notice that: 

1) Both the magnitude and the specifics of the 

voltage induced by the axial flux, in the di-

agnostic coil located around the rotor shaft, 

depend on the damage location and its type. 

2) Method of monitoring the axial flux level is 

particularly useful at detecting defects in 

the 3-phase windings (e.g. winding short 

circuiting) as well as damage to the rings of 

the squirrel cages of rotors of the induction 

and asynchronous machines. 

3) The squirrel cage bar fracture is difficult to 

detect by merely monitoring the axial flux. 

The axial flux properties, as discussed above, 

made it a very useful parameter at diagnostics 

of the rotating alternating-current machines, as 

a simple coil of few to few tens turns put over 

the shaft of the machine will suffice to detect its 

occurrence. The magnitude as well as the type 

of the voltage induced in the coil by the axial 

flux, depend on both the location and size of the 

damage to the machine circuitry. 
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There are numerous phenomena in the induc-

tion machine, which require 3D calculations. 

Axial flux is a good example here. At the same 

time there is no chance to use any symmetry of 

such phenomenon and conduct calculations 

only in some part of the machine. The program 

presented here by the authors, is able to take 

into account the detailed form of the machine, 

including stator laminated stack, rotor lami-

nated stack, windings, housing and the bearing 

area. The program is able to conduct calcula-

tions for transient states of the machine. It is 

very easy to simulate any damage of the ma-

chine, which was shown for the case of frac-

tured bar, fractured ring, and damaged lami-

nated stator stack. The program takes into ac-

count non-linear iron magnetisation character-

istic. By assuming the magnetic permeability 

tensor of  υ, one can take into account magnetic 

asymmetry of laminated stator and rotor stacks. 

By summing electric permeability tensor for the 

laminated stacks, bars and rings, it is possible to 

simulate stator eddy currents, rotor cross cur-

rents, and the squirrel cage itself. Application of 

finite elements as shown in Fig. 2 made it pos-

sible to simulate rotor squirrel skew. 

For example, for the case of 36 stator teeth and 

28 rotor squirrel cage bars with skew, the total 

number of unknowns was 1951811, including 

176986 nodes with unknown scalar potential. 

The tetrahedral number was 1439524. There 

were total of 272430 nodes. The number of 

non-zero elements of sparse matrix of the sys-

tem was 39444439. At unoptimised usage of 

operating memory the Matlab system, including 

the program itself, used up some 2Gb. Rotor 

teeth skew is one of the methods of limiting the 

voltage magnitude in the motor shaft.  
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