PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Badania nad preparatyką oraz fizykochemicznymi właściwościami modyfikowanych materiałów węglowych pod kątem praktycznego zastosowania

Autorzy
Identyfikatory
Warianty tytułu
EN
Research on preparation and physico-chemical properties of modified carbon materials from the point of view of practical application
Języki publikacji
PL
Abstrakty
PL
Jak wykazano w przeglądzie literatury niniejszej rozprawy, pomimo ogromnego nakładu pracy badawczej, materiały węglowe zawierające pierwiastki obce wymagają ciągłego dalszego rozpoznawania i udoskonalania. Niektóre z nich, tzn. węgle aktywne zawierające TiO2, włókna węglowe pokryte warstwą miedzi oraz węgle aktywne wzbogacone w azot, były przedmiotem badań autora. Przeprowadzone badania pozwoliły na sformułowanie wniosków istotnych z punktu widzenia praktycznego zastosowania.
EN
In recent years a rapid growth in the field of advanced technologies including electronics, nanotechnology, biotechnology etc., can be observed. In a consequence, there is a necessity to improve materials being utilized in the production processes. Technology utilizes almost all elements including carbon. The application spectrum of this element substantially widened in last century. Now, carbon constitutes an individual field of science and covers materials known for a long time, as well as those discovered in recent decades. Among a range of carbon materials, carbons containing foreign species are of a special interest. Because modification by mean of loading of foreign elements often strongly influences properties, application area of such materials can be extended. Nevertheless, despite a long history and extensive research, modification processes of carbon materials are often associated with certain difficulties and saddled with undesirable side-effects. In some cases treatments lead to unsatisfactory products or materials obtained in several lots do not reveal repeatable properties. By these reasons this work deals with possibilities to overcome mentioned negative aspects. Besides investigations focused on improvement of known methods, research on novel techniques for loading of foreign species into carbon materials was undertaken. Thus, some carbon materials i. e. activated carbons containing TiO2, copper-coated carbon fiber, and nitrogen-enriched activated carbons were researched by the author. Preparation procedure and characterization of coal-based activated carbons supporting TiO2 is presented. TiO2-loaded activated carbons were prepared through impregnation of coals with TiO2 precursor followed by traditional carbonization and activation. Decomposition of titanium precursor introduced into three raw coals of a different composition is described and illustrated by XRD patterns taken at different stages of the preparation. Influence of a coal rank and titanium supported on coals on the development of a mesoporous structure is shown. Moreover, influence of activation time on both the Ti content and the size of TiO2 particles supported in activated carbons is studied. As found, in comparison with the traditional impregnation method done after activation, loading of TiO2 through carbon precursor impregnation leads to stronger fixation of the titania on the activated carbon. This is reflected by lower susceptibility of TiO2 to elution with water. A novel method for preparation of metallic copper-coated carbon fiber is described. The raw material was prepared through blending of isotropic coal pitch with CuBr2 followed by spinning. In this way a raw copper salt-blended fiber with uniform distribution of copper was obtained. The raw fiber was stabilized with air and next subjected to treatment with hydrogen at temperatures up to 1143 K. XRD and XPS analyses confirmed the presence of metallic copper in the resulted fiber. Additionally, the metal was detected (EPMA maps) predominantly on the surface of the fiber, and obtained coating was smooth and did not exhibit noticeable defects (SEM observations). On the base of obtained results the mechanism of copper diffusion over carbon volume is proposed. In addition some general guidelines concerning extending of the method to other materials are given. In the last part of the work treatment of commercial activated carbons under elevated pressure with ammonia generated in situ from the stoichiometric mixture of NaOH and NH4C1 is studied. As confirmed by results of X-ray photoelectron spectroscopy measurements, the treatment can be used for enriching of activated carbon with nitrogen, and the nitrogen content increase achieved by autoclave treatment at 473 K was comparable to the one obtained by treatment in dry ammonia atmosphere at 873 K under atmospheric pressure. Negligible changes in the BET area of activated carbon subjected to the treatment at elevated pressure were confirmed by nitrogen adsorption isotherms (77 K). This was distinct to the activated carbons treated with dry ammonia revealing significantly increased specific surface area. The influence of the modification method on the structure of surface functional groups formed on activated carbons has been studied. Studies focused on the adsorption from both gas and liquid phases were also carried out. In contrast to raw activated carbons, adsorbents subjected to treatment with ammonia in most cases revealed enhanced adsorption of model acidic compounds used in the reasearch. Adsorbents treated in autolave and modified under atmospheric pressure (873 K) showed comparable efficiency in adsorption of phenol from water, and CO2 and NO2 from air. However, distinct to the thermal method, modification under elevated pressure did not result in an increase of SO2 uptake from air.
Twórcy
  • Instytut Technologii Chemicznej Nieorganicznej i Inżynierii Środowiska Politechniki Szczecińskiej
Bibliografia
  • [1] McEnnay B., Structure and Bonding in Carbon Materials, in: Carbon Materials for Advanced Technologies, ed. T. D. Burchell, Amsterdam. Lausanne, New York, Oxford, Shannon, Singapore, Tokyo, Pergamon 1999.
  • [2] Harris P. J. F., Carbon Nanotubes and Related Structures: New Materials for the Twenty-first Century, Cambridge, Cambridge University Press 1999.
  • [3] Coleman J. N., Khan U., Blau W. J., Gun'ko Y. K., Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites, Carbon. 2006, Vol. 44, No. 9, s. 1624.
  • [4] Duclaux L., Review of the doping of carbon nanotubes (multiwalled and single-walled), Carbon, 2002, Vol. 40, No. 10, s. 1751.
  • [5] Fiorito S., Serafino A., Andreola F., Bernier P., Effects of fullerenes and single-wall carbon nanotubes on murine and human macrophages, Carbon, 2006, Vol. 44, No. 6, s. 1100.
  • [6] Marsh H., Carbon Materials: An Overview of Carbon Artifacts, in: Introduction to Carbon Technologies, ed. H. Marsh, E. A. Heintz, F. Rodriguez-Reinoso, Alicante, Universidad de Secretariado de Alicante, Publicationes 1997.
  • [7] Inagaki M., New Carbons-Control of Structure and Functions, Amsterdam, Lausanne. New York, Oxford, Shannon, Singapore, Tokyo, Elsevier 2000, ISBN-13: 978-0-08-043713-3.
  • [8] Przepiórski J., Activated Carbon filters and their industrial applications, in: Activated Carbon Surfaces in Environmental Remediation, ed. T. J. Bandosz, Amsterdam. Boston, Heidelberg, London, New York, Oxford, Paris. SanDiego, San Francisco, Singapore, Sydney, Tokyo, Academic Press 2006.
  • [9] Yin C. Y., Aroua M. K., Daud W. M. A. W., Review of modifications of activated carbons for enhancing contaminant uptakes from aqueous solutions, Sep. Purif. Technol. 2007, Vol. 52, s.403.
  • [10] Bokros J., Deposition. structure, and properties of pyrolytic carbon, in: Chemistry and Physics of Carbon, Vol. 5, ed. P. L. Walker, New York, Mercel Dekker 1969, s. 3.
  • [11] Narisawa M., Adachi M., Suoma I., High-temperature creep and resultant anisotropy in ultrasonic velocity in isotropic graphite, J. Mater. Sci., 1994, Vol. 29, No. 3, s. 708.
  • [12] Inagaki M., Tachikawa H., Nakahashi T., Konno H., Hishiyama Y., The chemical bonding state of nitrogen in Kapton-derived carbon film and its effect on the graphitization process, Carbon , 1998, Vol. 36, No. 7—8, s. 1021.
  • [13] Bourgerette C., Oberlin A., Inagaki M., Structural changes from polyimide films to graphite: Part IV. Novax and PPT, J. Mater. Res., 1995, Vol. 10, No. 4, s. 1024.
  • [14] Abrahamson J., Graphite sublimation temperatures, carbon arcs and crystallite erosion. Carbon, 1974, Vol. 12, No. 2, s. 111.
  • [15] Bundy F. P., Direct Conversion of Graphite to Diamond in Static Pressure Apparatus, J. Chem. Phys. 1963, Vol. 38, No. 3, s. 631.
  • [16] Ullman 's Encyclopedia of Industrial Chemistry, 6th Edition, Weinheim, Wiley-VCH 2002.
  • [17] Derbyshire F., Jagtoyen M., Thwaites M., Activated Carbons-Production and Application, in: Porosity in Carbons, ed. J. W. Patrick, London, Melbourne, Auckland. Edward Arnold 1995.
  • [18] Rodriguez-Reynoso F., Carbon as a Catalyst Support, in: Porosity in Carbons, ed. J. W. Patrick, London, Melbourne. Auckland, Edward Arnold 1995.
  • [19] Radovic L. R., Sudhakar C., Carbon as a catalyst support. in: Introduction to Carbon Technologies, ed. H. Marsh, E. A Heintz. F. Rodriguez-Reinoso, Alicante. Universidad de Alicante, Secretariado de Publicationes 1997.
  • [20] Kirk-Othmer Encyclopedia of Chemical Technology, 4 ed., John Wiley & Sons, Inc., 2005.
  • [21] Lahaye J., The chemistry of carbon surfaces, Fuel, 1998, Vol. 77, No. 6, s. 543.
  • [22] Laszlo K., Tombacz E., Josepovits K., Effect of activation on the surface chemistry of carbons from polymer precursors, Carbon, 2001, Vol. 39, No. 8, s. 1217.
  • [23] Zielke U., Huttinger K. J., Hoffman W. P., Surface-oxidized carbon fibers: I. Surface structure and chemistry, Carbon, 1996, Vol. 34, No. 8, s. 983.
  • [24] Zawadzki J., Infared spectroscopy in surface chemistry of carbon, in: Chemistry and Physics of Carbon, ed. P. A. Thrower, New York, Marcel Dekker 1989, Vol. 21. s. 47.
  • [25] Rodriguez-Reinoso F., Activated Carbon: Structure, characterization preparation and applications, in: Introduction to Carbon Technologies, ed. H. Marsh, E. A. Heintz, F. Rodriguez-Reinoso, Alicante, Universidad de Alicante, Secretariado de Publicationes 1997.
  • [26] Bansal R. P., Donnet J. B., Stoeckli F., Active Carbon, New York, Mercel Dekker 1988. ISBN 10:0824778421.
  • [27] Sing K. S. W., The use of physisorption for the characterization of microporous carbons, Carbon, 1989, Vol. 27, No. 1, s. 5.
  • [28] Rodriguez-Reinoso F., Molina-Sabio M., Munecas M. A., Effect of microporosity and oxygen surface groups of activated carbon in the adsorption of molecules of different polarity, J. Phys. Chem., 1992, Vol. 96, No. 6, s. 2707.
  • [29] Wigmans T., Fundamentals and practical implications of activated carbon production by partial gasification of carbonaceous materials, in: Carbon and Coal Gasification, ed. J. L. Figueiredo, J. A. Moulijn, Dordrecht, Martinus Nijhoff 1989.
  • [30] Auer E., Freund A., Pietsch J., Tacke T., Carbons as Supports for Industrial Precious Metal Catalysts, Appl. Catal. A: General, 1998, Vol. 173, No. 2, s. 259.
  • [31] Ehrburger P., Dispersion of small particles on carbon surfaces, Adv. Coll. Interface Sci., 1984, Vol. 21, No. 3—4, s. 275.
  • [32] Wang S., Lu G. Q., Effects of acidic treatments on the pore and surface properties of Ni catalyst supported on activated carbon, Carbon, 1998, Vol. 36, No. 3, s. 283.
  • [33] Lodewyckx P., Adsorption of chemical warfare agents, in: Activated Carbon Surfaces in Environmental Remediation, ed. T. J. Bandosz, Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, SanDiego, San Francisco, Singapore, Sydney, Tokyo, Academic Press 2006, s. 475.
  • [34] Skowroński J. M., Walkowiak M., Lithium intercalation into CrO3-GIC and its derivatives, J. Solid State Elektrochem, 2003, Vol. 8, s. 23.
  • [35] Zheng T., Dahn J., Aplications of Carbon in Lithium-Ion Batteries, in: Carbon Materials in Advanced Technologies, ed. T. D. Burchell, Amsterdam, Lausanne, New York, Oxford, Shannon, Singapore, Tokyo, Pergamon 1999, s. 341.
  • [36] Skowroński J. M., Knofczyński K., Yamada Y., Mechanism of lithium insertion in hollow carbon fibers-based anode, Solid State Ionics, 2003, Vol. 157, s. 133.
  • [37] Skowroński J. M., Graphite Intercalation Compounds, in: Handbook of Organic Conductive Molecules and Polymers, Vol. 1, ed. H. S. Nalwa, Chichester, Wiley & Sons 1997.
  • [38] Henning K. D., Schäfer S., Impregnated activated carbon for. environmental protection, Gas Sep. Purif., 1993, Vol. 7, No. 4, s. 235.
  • [39] Hall P. G., Gittings P. M., Winn J. M., Robertson J., Sorption of phosphine by activated carbon cloth and the effects of impregnation with silver and copper nitrates and the presence of water, Carbon, 1985, Vol. 23, No. 4, s. 353.
  • [40] Ecologix Environmental Systems, LLC, Batch Treatment Systems. http://www.ecologixsystems.com/c_impregnated.shtml (data ostatniego dostępu 21.04.2005).
  • [41] Henning K. D., Schäfer S., Impregnated activated carbon for environmental protection, http://www.activated-carbon.com/enviro.html (data ostatniego dostępu 01.02.2007).
  • [42] Alvim Ferraz M. C. M., Cabral Monteiro J. L., Structure of Impregnated Active Carbons Produced with Almond Shells — Influence of Impregnation Methodology, Fuel, 2000. Vol. 79, No. 6, s. 645.
  • [43] Bradley R. H., Clackson I. L., Turner A., Ext. Abstr. 20th Bienn. Conf. Am. Carbon Soc. Santa Barbara 1991, s. 90.
  • [44] Alvim-Ferraz M. C. M. Todo-Bom Gaspar C.M., Impregnated active carbons to control atmospheric emissions: I. Influence of the impregnated species on the porous structure, J. Colloid Interf. Sci., 2003, Vol. 259, No. 1, s. 133.
  • [45] Kim D. J., Yie J.E., Role of copper chloride on the surface of activated carbon in adsorption of methyl mercaptan, J. Coll. Interf. Sci., 2005, Vol. 283, No. 2, s. 311.
  • [46] Al-Khatib M. F., Iyuke S. E., Mohamad A. B., Daud W. R. W., Kadhum A. A. H., Shariff A. M., Yarmo M. A., The effect of impregnation of activated carbon with SnCl2·2H2O on its porosity, surface composition and CO gas adsorption, Carbon, 2002, Vol. 40. No. 11, s. 1929.
  • [47] Molina-Sabio M., Perez V., Rodriguez-Reinoso F., Impregnation of activated carbon with chromium and copper salts: Effect of porosity and metal content, Carbon, 1994, Vol. 32, No. 7, s. 1259.
  • [48] Maroto Valer M. M., Tang Z., Zhang Y., CO2 capture by activated and impregnated anthracites, Fuel Process. Technol., 2005, Vol. 86, No. 14-—15, s. 1487.
  • [49] Ziętek S., Świątkowski A., Szmigielski R., Palijczuk D., Skubiszewska-Zięba J., Influence of Presence of Inert Impregnant (NaCl) on Adsorptive Characteristics of Activated Carbon, Adsorption, 2005, Vol. 11, s. 715.
  • [50] Carrott P. J. M., Ribeiro Carrott M. M. L., Mourao P. A. M., Pore size control in activated carbons obtained by pyrolysis under different conditions of chemically impregnated cork. J. Anal. Appl. Pyrolysis, Vol. 75, No. 2. s. 120.
  • [51] Kloubek J., Investigation of impregnant deposition in active carbon. Carbon, 1981, Vol. 19, No. 4, s. 303.
  • [52] Fortier H., Zelenietz C., Dahn T. R., Westreich P., Stevens D. A., Dahn J. R., SO2 adsorption capacity of K2CO3-impregnated activated carbon as a function of K2CO3 content loaded by soaking and incipient wetness, Appl. Surf. Sci., 2007, Vol. 253, No. 6. s. 3201.
  • [53] Lorenzen L., van Deventer J. S. J., Landi W. M., Factors affecting the mechanism of the adsorption of arsenic species on activated carbon. Miner. Eng., 1995, Vol. 8, No. 4—5, s. 557.
  • [54] Oya A., Yoshida S., Alcaniz-Monge J., Linares-Solano A., Preparation and properties of an antibacterial activated carbon fiber containing mesopores, Carbon, 1996, Vol. 34, No. 1, s. 53.
  • [55] Douidah A., Marecot P., Labruquere S., Barbier J., Stability of supported platinum catalysts in aqueous phase under hydrogen atmosphere, Appl. Catal. A: General, 2001, Vol. 210, No. 1—2, s. 111.
  • [56] Montassier C., Dumas J. M., Granger P., Barbier J., Deactivation of supported copper based catalysts during polyol conversion in aqueous phase, Appl. Catal. A., 1995, Vol. 121. No. 2. s. 231.
  • [57] Vleeming J. H., Kuster B. F. M., Marin G. B., Oudet F., Courtine P., Graphite-Supported Platinum Catalysts: Effects of Gas and Aqueous Phase Treatments, J. Catal., 1997, Vol. 166, No. 2, s. 148.
  • [58] Przepiórski J., Yoshizawa N., Yamada Y., Activated carbons containing TiO2: Characterization and influence of a preparation method on the state of TiO2 supported, J. Mater. Sci., 2001, Vol. 36, No. 17, s. 4249.
  • [59] Tamai H., Tataoka Y., Nishiyama F., Yasuda H., Characteristics and catalytic activity of carbons obtained from pitch containing noble metal complexes, Carbon, 2000, Vol. 38, No. 6, s. 899.
  • [60] Miyanaga S., Hiwara A., Yasuda H., Preparation and High Bacteriostatic Action of the Activated Carbons Possessing Ultrafine Silver Particles, Sci. Technol. Adv. Mater, 2002, Vol. 3 No. 2, s. 103.
  • [61] Tamai H., Kouzu M., Yasuda H., Preparation of highly mesoporous and high surface area activated carbons from vinylidene chloride copolymer containing yttrium acetylacetonate, Carbon, 2003, Vol. 41, No. 8, s. 1678.
  • [62] Watson S. S., Beydoun D., Scott J. A., Amal R., The effect of preparation method on the photoactivity of crystalline TiO2 particles, Chem. Eng. J., 2003, Vol. 95, No. 1—3, s. 213.
  • [63] Zhang X., Zhou M., Lei L., TiO2 photocatalyst deposition by MOCVD on activated carbon, Carbon, 2006, Vol. 44, No. 2, s. 325.
  • [64] Lorenc-Grabowska E., Gryglewicz G., Gryglewicz S., Development of mesoporosity in activated carbons via coal modification using Ca- and Fe-exchange, Micropor. Mesopor. Mat., 2004, Vol. 76, No. 1—3, s. 193.
  • [65] Ozaki J., Ohizumi W., Endo N., Oya A., Yoshida S., Iizuka T., Roman-Martinez M.C., Linares-Solano A., Preparation of platinum loaded carbon fiber by using a polymer blend. Carbon, 1997, Vol. 35, No. 10—11, s. 1676.
  • [66] Oya A., Yoshida S., Alcaniz-Monge J., Linares-Solano A., Formation of mesopores in phenolic resin-derived carbon fiber by catalytic activation using cobalt, Carbon, 1995, Vol. 33, No. 8, s. 1085.
  • [67] Hong I. Jiang H., Park Y. D., Kim J. Y., Ha B. K., Metal dispersed activated carbon fibers and their application for removal of SOx Chem. Phys. Lett., 2002, Vol. 366, No. 5—6. s. 572.
  • [68] Przepiórski J., Deposition of additives onto surface of carbon materials by blending method-general conception, Mat. Chem. Phys. 2005, Vol. 92, No. 1, s. 1.
  • [69] Przepiórski J., Yoshida S., Oya A., Structure of K2CO3-loaded activated carbon fiber and its deodorization ability against H2S gas, Carbon, 1999, Vol. 37, No. 12, s. 1881.
  • [70] Przepiórski J., Morawski A. W., Oya A., Method for Preparation of Copper-Coated Carbon Material, Chem. Mater., 2003, Vol. 15, No. 4, s. 862.
  • [71] Ryu S. K., Kim S. Y., Gallego N., Edie D. D., Physical properties of silver-containing pitch-based activated carbon fibers, Carbon, 1999, Vol. 37, No. 10, s. 1619.
  • [72] Przepiorski J., Shiraishi S., Oya A., Potassium — Loaded ACF Against H2S Gas by blending and Dipping Method: Effect of Subsequent Deodorizations and Regenerations on Deodorant Ability, J. Odor Res. Eng., 1998, Vol. 29, No. 2, s. 108.
  • [73] Przepiorski J., Abe Y., Yoshida S., Oya A., Preferential supporting of potassium carbonate around the peripheral region of activated carbon fibre, J. Mater. Sci. Lett., 1997, Vol. 16, No. 15, s. 1312.
  • [74] Przepiorski J., Oya A., K2CO3-loaded Deodorizing Activated Carbon Fibre Against H2S Gas: Factors Influencing the Deodorizing Efficiency and the Regeneration Method, J. Mater. Sci. Lett., 1998, Vol. 17, No. 8, s. 679.
  • [75] Przepiorski J., Nakahara M., Oya A., lmamura Y., Jpn. Kokai Tokkyo Koho JP 09315810 A2 9 Dec 1997, Nippon Chemical Industrial Co., Ltd.. Japan.
  • [76] Świątkowski A., Deryło-Marczewska A., Gaworek J., Biniak S., Study of Adsorption Equilibria in the Systems Ternary Liquid Mixtures-Modified Activated Carbons. J. Coll. Interf. Sci., 1999, Vol. 218, s. 480.
  • [77] Biniak S., Szymański G., Siedlewski J., Świątkowski A., The characterization of activated carbons with oxygen and nitrogen surface groups, Carbon, 1997, Vol. 35, No. 12, s. 1799.
  • [78] Ermolenko I. N., Lyubliner I. P., Gulko N. V., Chemically modified carbon fibers and their application, New York, VCH 1990, s. 155. ISBN 978-3-527-26927-3.
  • [79] Lisovskii A., Semiat R., Aharoni C., Adsorption of sulfur dioxide by active carbon treated by nitric acid: I. Effect of the treatment on adsorption of SO2 and extractability of the acid formed, Carbon, 1997, Vol. 35, No. 10—11, s. 1639.
  • [80] Pitman C. U. Jr., He G. R., Wu B., Gardner S. D, Chemical modification of carbon fiber surfaces by nitric acid oxidation followed by reaction with tetraethylenepentamine, Carbon, 1997, Vol. 35, No. 3, s. 317.
  • [81] Mawhinney D. B., Yates Jr. J. T., FTIR study of the oxidation of amorphous carbon by ozone at 300 K — Direct COOH formation, Carbon, 2001, Vol. 39, No. 8, s. 1167.
  • [82] Morena-Castilla C., Lopez-Ramon M. V., Carrasco-Marin F., Changes in surface chemistry of activated carbons by wet oxidation, Carbon, 2000, Vol. 38, No. 14, s.1995.
  • [83] Deryło-Marczewska A., Świątkowski A., Buczek B., Biniak S., Adsorption equilibria in the systems: Aqueous solutions of arganics-oxidized activated carbon samples obtained from different parts of granules, Fuel, 2006, Vol. 85, s. 410.
  • [84] Hoang H. B., Abanto-Chavez H. J., Kozhemyakina I. A., Hoang K. B., Temkin O. N.. Adsorption of Zn(OAc)2 from aqueous solutions on the surface of activated carbons modified with acetic acid, Russ. J. Appl. Chem., 2003, Vol. 76, No. 9, s. 1418.
  • [85] Beck N. V., Meech S. E., Norman P. R., Pears L. A., Characterisation of surface oxides on carbon and their influence on dynamic adsorption, Carbon, 2002, Vol. 40, No. 4, s. 531.
  • [86] Shim J. W., Park S. J., Ryu S. K., Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers, Carbon, 2001, Vol. 39, No. 11, s. 1635.
  • [87] Boehm H. P., Some aspects of the surface chemistry of carbon blacks and other carbons, Carbon, 1994, Vol. 32, No. 5, s. 759.
  • [88] Tamon H., Okazaki M., Influence of acidic surface oxides of activated carbon on gas adsorption characteristics, Carbon, 1996, Vol. 34, No. 6, s. 741.
  • [89] Giroir-Fendler A., Richard D., Gallezot P., Heterogeneous Catalysis and Fine Chemicals Studies in Surface and Catalysis and Fine Chemicals, ed. M. Guisnet, J. Barrault, C. Bouchoule, D. Duprez, C. Montassier, G. Pe'rot, Amsterdam, Elsevier 1988, Vol. 41, s. 171.
  • [90] Rodriguez-Reinoso F., The role of carbon materials in heterogeneous catalysis, Carbon, 1998. Vol. 36, No. 3, s. 159.
  • [91] Ryu Y. G., Pyun S. I., Kim C. S., Shin D. R., A study on the formation of surface functional groups during oxygen reduction on a platinum-dispersed carbon electrode in an 85% H3PO4 solution at elevated temperature, Carbon, 1998, Vol. 36, No. 3, s. 293.
  • [92] Monser L., Adhoum N., Modified activated carbon for the removal of copper. zinc, chromium and cyanide from wastewater, Sep. Purif. Technol., 2002, Vol. 26, s. 137.
  • [93] Kikuchi Y., Qian Q. R., Machida M., Tatsumoto H., Effect of ZnO loading to activated carbon on Pb(II) adsorption from aqueous solution, Carbon, 2006, Vol. 44, s. 195.
  • [94] Pakuła M., Biniak S., Świątkowski A., Neffe S., Influence of progressive surface oxidation of nitrogen-conraining carbon on its electrochemical behaviour in phosphate buffer solutions, Carbon, 2002, Vol. 40, s. 1873.
  • [95] Szymański S., Karpiński Z., Biniak S., Świątkowski A., The effect of the gradual thermal decomposition of surface oxygen species on the chemical and catalytic properties of oxidized activated carbon, Carbon, 2002, Vol. 40, s. 2627.
  • [96] Mendendez J. A., Phillips J., Xia B., Radovic L. R., On the Modification and Characterization of Chemical Surface Properties of Activated Carbon: In the Search of Carbons with Stable Basic Properties, Langmuir, 1996, Vol. 12, No. 18, s. 4404.
  • [97] Shin S., Jang J., Yoon S. H., Mochida I., A study on the effect of heat treatment on functional groups of pitch based activated carbon fiber using FTIR, Carbon, 1997, Vol. 35. No. 12, s. 1739.
  • [98] Dastgheib S. A., Karanfil T., Adsorption of oxygen by heattreated granular and fibrous activated carbons,. J. Coll. Interf. Sci., 2004, Vol. 274, No. 1, s.1.
  • [99] Świątkowski A., Deryło-Marczewska A., Goworek J., Błażewicz S., Study of adsorption from binary liquid mixtures on thermally treated activated carbon, Appl. Surf. Sci., 2004, Vol. 236, s.313.
  • [100] Błażewicz S., Świątkowski A., Trznadel B. J., The influence of heat treatment on activated carbon structure and porosity, Carbon, 1999, Vol. 37, s. 693.
  • [101] Hall C. R., Holmes R. J., The preparation and properties of some activated carbons modified by treatment with phosgene or chlorine, Carbon, 1992, Vol. 30, No. 2, s. 173.
  • [102] Adams L. B., Hall C. R., Holmes R. J., Newton R. A., An examination of how exposure to humid air can result in changes in the adsorption properties of activated carbons, Carbon. 1988, Vol. 26, No. 4, s. 451.
  • [103] Hall C. R., Holmes R. J., The preparation and properties of some chlorinated activated carbons, part II. Further observations, Carbon, 1993, Vol. 31, No. 6, s. 881.
  • [104] Evans M. J. B., Halliop E., Liang S., MacDonald J. A. F., The effect of chlorination on surface properties of activated carbon, Carbon, 1998, Vol. 36, No. 11, s. 1677.
  • [105] Nakamura A., Inui T., Kinomura N., Suzuki T., Effect of chlorine treatment on adsorption properties of phenol-formaldehyde resin-derived char, Carbon, 2000, Vol. 38, No. 9, s. 1361.
  • [106] Feng W., Borguet E., Vidic R. D., Sulfurization of carbon surface for vapor phase mercury removal - I: Effect of temperature and sulfurization protocol, Carbon, 2006, Vol. 44, No. 14. s. 2006.
  • [107] Boudou J. P., Chehimi M., Broniek E., Siemieniewska T., Bimer J., Adsorption of H2S or SO2 on an activated carbon cloth modified by ammonia treatment, Carbon, 2003, Vol. 41, No. 10, s. 1999.
  • [108] Economy J., Foster K. L., Andreopoulos A. G., Jung J., Tailoring carbon fibers for adsorbing volatiles, CHEMTECH, 1992, Vol. 22, No. 10, s. 597.
  • [109] Kawabuchi Y., Sotowa C., Kuroda K., Kawano S., Duayne D., Preparation of Active Carbon Fiber with Basic Properties, in: Extended Abstracts of European Carbon Conference Carbon '96, Newcastle (UK) 1996, s. 431.
  • [110] Raymundo-Pinero E., Cazorla-Amoros D., Linares-Solano A., The role of different nitrogen functional groups on the removal of SO2 from flue gases by N-doped activated carbon powders and fibres, Carbon, 2003, Vol. 41, No. 10, s. 1925.
  • [111] Mochida I., Hirayama T., Kisamori S., Kawano S., Fujitsu H., Marked increase of sulfur dioxide removal ability of poly(acrylonitrile)-based active carbon fiber by heat treatment at elevated temperatures, Langmuir, 1992, Vol. 8, No. 9, s. 2290.
  • [112] Lahaye J., Nanse G., Bargeev A., Strelko V., Porous structure and surface chemistry of nitrogen containing carbons from polymers, Carbon, 1999, Vol. 37, No. 4, s. 585.
  • [113] Muniz J., Herrero J. E., Fuertes A. B., Treatments to enhance the SO2 capture by activated carbon fibres, Appl. Catal. B, 1998, Vol. 18, No. 1—2, s. 171.
  • [114] Fujitsu H., Mochida I., Verheyen V., Perry G., Geoffrey J., Allardice D. J., The influence of modifications to the surface groups of brown coal chars on their flue gas cleaning ability, Fuel, 1993, Vol. 72, No. 1, s. 109.
  • [115] Li K., Ling L., Lu C., Qiao W., Liu Z., Liu L., Mochida I., Catalytic removal of SO2 over ammonia-activated carbon fibers, Carbon, 2001, Vol. 39, No. 12, s. 1803.
  • [116] Boudou J. P., Surface chemistry of a viscose-based activated carbon cloth modified by treatment with ammonia and steam, Carbon, 2003, Vol. 41, No. 10, s. 1955.
  • [117] Mangun C. L., Benak K. R., Economy J., Foster K. L., Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia, Carbon. 2001, Vol. 39 No. 12, s. 1809—1820.
  • [118] Tomlinson J. B., Freeman J. J., Theocharis C. R., The preparation and adsorptive properties of ammonia-activated viscose rayon chars, Carbon, 1993, Vol. 31, No. 1, s. 13.
  • [119] Bimer J., Sałbut P. D., Bierłożecki S., Boudou J. P., Broniek E., Siemieniewska T., Modified active carbons from precursors enriched with nitrogen functions: Sulfur removal capabilities. Fuel, 1998, Vol. 77, No. 6, s. 519.
  • [120] Bimer J., Salbut P. D., Berlozecki S„ Boudou J. P., Broniek E., Siemieniewska T., Patent PL 182024, June 21, 1996.
  • [121] Burg P., Fydrych P., Cagniant D., Nanse G., Bimer J., Jankowska A., The characterization of nitrogen-enriched activated carbons by IR, XPS and LSER methods, Carbon, 2002, Vol. 40, No. 9, s. 1521.
  • [122] Tereczki B., Kurth R., Boehm H. P., Activation of Carbon Catalysts for Oxidation Reactions by Treatment with Ammonia or Hydrogen Cvanide and Possible Causes for the Loss of Activity During Catalytic Action, in: Preprints Carbon '80, Internat. Carbon Conf., Baden--Baden 1980.
  • [123] Chen W., Cannon F. S., Rangel-Mendez J. R., Ammonia-tailoring of GAC to enhance perchlorate removal. I: Characterization of NH3 thermally tailored GACs, Carbon, 2005, Vol. 43, No. 3, s. 573.
  • [124] Abotsi G. M. K., Scaroni A. W., Reaction of carbons with ammonia: effects on the .surface charge and molybdenum adsorption, Carbon, 1990, Vol. 28, No. 1, s. 79.
  • [125] Xie F., Phillips J., Silva I. F., Palma M. C., Mendendez J. A., Microcalorimetric study of acid sites on ammonia- and acid-pretreated activated carbon, Carbon, 2000, Vol. 38, No. 5, s. 691.
  • [126] Pels J. R., Kapteijn F., Moulijn J. A., Zhu Q., Thomas K. M., Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis, Carbon, 1995, Vol. 33, No. 11, s. 1641.
  • [127] Stańczyk K., Dziembaj R., Piwowarska R. Z., Witkowski S., Transformation of nitrogen structures in carbonization of model compounds determined by XPS, Carbon, 1995, Vol. 33, No. 10, s. 1383.
  • [128] Stohr B., Boehm H. P., Schlogl R., Enhancement of the catalytic activity of activated carbons in oxidation reactions by thermal treatment with ammonia or hydrogen cyanide and observation of a superoxide species as a possible intermediate, Carbon, 1991, Vol. 29, No. 6, s. 707.
  • [129] Abe M., Kawashima K., Sakai H., Kaneko K., Amination of activated carbon and adsorption characteristics of its aminated surface, Langmuir, 2000, Vol. 16, No. 11, s. 5059.
  • [130] Jansen R. J. J., van Bekkum H., XPS of nitrogen-containing functional groups on activated carbon, Carbon, 1995, Vol. 33, No. 8, s. 1021.
  • [131] Jones C., Sammann E., Effect of low power plasmas on carbon fibre surfaces. Carbon. 1990, Vol. 28, No. 4, s. 509.
  • [132] Voll M., Boehm H. P., Basische Oberflächenoxide auf Kohlenstoff — IV. Chemische Reaktionen zur Identifizierung der Oberflächengruppen, Carbon, 1971, Vol. 9, No. 4, s. 481.
  • [133] Boehm H. P., Diehl E., Heck W., Sappok R., Surface Oxides of Carbon. Angew. Chem. Int. Ed., 1964, Vol. 3, No. 10, s. 669.
  • [134] Boehm H. P., Mair G., Stohr T., de Rincon A. R., Tereczki B., Carbon as a catalyst in oxidation reactions and hydrogen halide elimination reactions, Fuel, 1984, Vol. 63, No. 8, s. 1061.
  • [135] Jansen R. J. J., van Bekkum H., Amination and ammoxidation of activated carbons, Carbon, 1994, Vol. 32, No. 8, s. 1507.
  • [136] Davini P., Flue gas desulphurization by activated carbon fibers obtained from polyacrylonitrile by-product, Carbon, 2003, Vol. 41, No. 2, s. 277.
  • [137] Przepiórski J., Skrodzewicz M., Morawski A. W., High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption, Appl. Surf. Sci., 2004, Vol. 225, No. 1—4, s.235.
  • [138] Cho S. M., Properly Apply Selective Catalytic Reduction for NOx Removal, Chem. Eng. Prog., 1994, Vol. 90, No. 1, s. 39.
  • [139] Juntgen H., Kuhl H., Chemistry and Physics of Carbon, vol. 22, New York, Marcel Dekker 1989.
  • [140] Richter E., Carbon catalysts for pollution control, Catal. Today, 1990, Vol. 7, No. 2, s. 93.
  • [141] Muniz J., Marban G., Fuertes A. B., Low temperature selective catalytic reduction of NO over polyarylamide-based carbon fibres, Appl. Catal. B: Environ., 1999, Vol. 23, No. 1. s. 25.
  • [142] Mochida I., Ogaki M., Fujitsu H., Komatsubara Y., Ida S., Reduction of nitric oxide with activated PAN fibres, Fuel, 1985, Vol. 64, No. 8, s. 1054.
  • [143] Matzner S., Boehm H. P., Influence of nitrogen doping on the adsorption and reduction of nitric oxide by activated carbons, Carbon, 1998, Vol. 36, No. 11, s. 1697.
  • [144] Singoredjo L., Kapteijn F., Moulijn J. A., Martin-Martinez J. M., Boehm H. P., Modified activated carbons for the selective catalytic reduction of NO with NH3, Carbon, 1993, Vol. 31, No. 1, s.213.
  • [145] Xu L., Guo J., Jin F., Zeng H., Removal of SO2 from O2-containing flue gas by activated carbon fiber (ACF) impregnated with NH3, Chemosphere, 2006, Vol. 62, s. 823.
  • [146] Gaur V., Asthana R., Verma N., Removal of SO2 by activated carbon fibers in the presence of O2 and H2O, Carbon, 2006, Vol. 44, No. 1, s. 46.
  • [147] Strife J. R., Sheehan J. E., Ceramic Coating for Carbon/Carbon Composites, Am. Ceram. Soc. Bull., 1988, Vol. 67, No. 2, s. 369.
  • [148] Fitzer E., The future of carbon-carbon composites, Carbon, 1987, Vol. 25, No. 2, s. 163.
  • [149] Lake L., Ting J. M., Vapor Grown Carbon Fiber Composites, in: Carbon Materials in Advanced Technologies, ed. T. D. Burchell, Amsterdam, Lausanne, New York, Oxford, Shannon, Singapore, Tokyo, Pergamon 1999.
  • [150] Murdie N., Carbon Fibre/Carbon Composites: Production, Properties and Applications, in: Introduction to Carbon Technologies, ed. H. Marsh, E. A. Heintz, F. Rodriguez-Reinoso, Alicante, Universidad de Alicante, Secretariado de Publicationes 1997, s. 597.
  • [151] Maahs H. G., Ohlhorst C. W., Barret D. M., Ransone P. O., Sawyer J. W., Response of carbon-carbon composites to challenging environments, in: Materials Stability and Environmental Degradation, ed. A. Barkatt, E. D. Verink, Jr., ed. L. R. Smith, Materials Research Society Symposium Proceedings, 1988, Vol. 125,. s. 15.
  • [152] Zhao J. X., Bradt R. C., Walker P. L., Jr., Effect of air oxidation at 873 K on the mechanical properties of a carbon-carbon composite, Carbon, 1985, Vol. 23, No. 1, s. 9.
  • [153] Jones L. E., Thrower P. A., Walker P. L., Jr., Reactivity and related microstructure of 3d carbon/carbon composites, Carbon, 1986, Vol. 24, No. 1, s. 51.
  • [154] Abraham S., Pai B. C., Satyanarayana K. G., Vaidyan V. K., Copper coating on carbon fibres and their composites with aluminium matrix, J. Mater. Sci., 1992, Vol. 27, No. 13, s. 3479.
  • [155] Ryu Y. M., Yoon E. P., Rhee M. H., The behavior of the nickel layer in an aluminum matrix composite reinforced with nickel coated carbon fiber, J. Mater. Sci. Lett., 2000, Vol. 19. No. 12, s. 1103.
  • [156] Zhu Y. C., Ohtani S., Sato Y., Iwamoto N., Influence of boron ion implantation on the oxidation behavior of CVD-SiC coated carbon-carbon composites, Carbon, 2000, Vol. 38, No. 4, s. 501.
  • [157] Huan J. F., Zeng X. R., Li H. J., Xiong X. B., Huang M., Mullite-Al2O3-SiC oxidation protective coating for carbon/carbon composites, Carbon, 2003, Vol. 41, No. 14, s. 2825.
  • [158] Fritze H., Jojic J., Witke T., Ruscher C., Weber S., Scherrer S., Weiß R., Schultrich B., Borchardt G., Mullite based oxidation protection for SiC-C/C composites in air at temperatures up to 1900K, J. Eur. Ceram. Soc., 1988, Vol. 18, No. 16, s. 2351.
  • [159] Fu Q. G., Li H. J., Shi X. H., Li K. Z., Sun G. D., Silicon carbide coating to protect carbon/carbon composites against oxidation, Scripta Mater., 2005, Vol. 52, No. 9, s. 923.
  • [160] Huang C. Y., Wu C. C., The EMI shielding effectiveness of PC/ABS/nickel-coated-carbon-fibre composites, Europ. Polym. J., 2000, Vol. 36, No. 12, s. 2729.
  • [161] Huang C. Y., Pai J. F., Optimum conditions of electroless nickel plating on carbon fibres for EMI shielding effectiveness of ENCF/ABS composites, Eur. Polym. J., 1998, Vol. 34, No. 2. s. 261.
  • [162] Tzeng S. S., Chang F. Y., EMI shielding effectiveness of metal-coated carbon fiber-reinforced ABS composites, Mater. Sci. Eng., 2001, Vol. 302, No. 2, s. 258.
  • [163] Jehn H. A., PVD and ECD-competition, alternative or combination?, Surf. Coat. Technol., 1999, Vol. 112, No. 1—3, s. 210.
  • [164] Hackl G., Gerhard H., Popovska N., Coating of carbon short fibers with thin ceramic layers by chemical vapor deposition, Thin Solid Films, 2006, Vol. 513, No. 1—2, s. 217.
  • [165] Sharma S. B., Agarwala R. C., Agarwala V., Satyanarayana K. G., Characterization of carbon fabric coated with Ni-P and Ni-P-ZrO2-Al2O3 by electroless technique, J. Mater. Sci., 2002. Vol. 37, No. 24, s. 5247.
  • [166] McKee D. W., Oxidation protection of carbon materials, in: Chemistry and Physics of Carbon, vol. 23, ed. P. A. Thrower, New York, Basel, Hong Kong,, Marcel Dekker, Ltd. 1991.
  • [167] McKee D. W., Borate Treatment of Carbon Fibers and Carbon/Carbon Composites for Improved Oxidation Resistance. Carbon, 1986, Vol. 24, No. 6, s.737.
  • [168] Nixon T. D., Cawley J., Oxidation Inhibition Mechanisms in Coated Carbon-Carbon. Composites, J. Am. Ceram. Soc. Vol., 1992, Vol. 75, No. 3, s. 703.
  • [169] Yamamoto O., Sasamoto T., Inagaki M., Antioxidation of carbon-carbon composites by SiC concentration gradient and zircon overcoating, Carbon, 1995, Vol. 33, No. 4, s. 359.
  • [170] Isola C., Appendino P., Bosco F., Ferraris M., Salvo M., Protective glass coating for carbon-carbon composites, Carbon, 1998, Vol. 36, No. 7—8, s. 1213.
  • [171] Qian-Gang F., He-Jun L., Xiao-Hong S., Ke-Zhi L., Jian W., Min H., Oxidation protective glass coating for SiC coated carbon/carbon composites for application at 1773 K. Mater. Lett., 2006, Vol. 60, No. 3, s. 431.
  • [172] Strife J., Sheehan J., Ceramic Coatings for Carbon-Carbon Composites, Ceram. Bull. 1988, Vol. 67, No. 2, s. 364.
  • [173] Kyono T., Hall I. W., Taya M., Work of fracture of unidirectional metal matrix composites subjected to isothermal exposure, J. Mater. Sci. Vol., 1986, Vol. 21, No. 6, s. 1879.
  • [174] Ochiai S., Murakami Y., Theoretical Prediction of Tensile Strength of Fibers as a Function of Thickness of Brittle Zones on Fiber Surfaces Metallurgical Transactions, Metall. Trans. A, 1981. Vol. 12, No. 7, s. 1155.
  • [175] Przepiorski J., Yoshizawa N., Yamada Y., Preparation and characterization of coal-based activated carbons supporting TiO2, Pr. Nauk. Inst. Chem. Technol. Nafty Węgla Politech. Wrocław., 1999, Vol. 56, s. 363.
  • [176] Seah M. P., Smith G. C., Anthony M. T., AES: Energy calibration of electron spectrometers. I — an absolute, traceable energy calibration and the provision of atomic reference line energies, Surf. Interface Anal., 1990, Vol. 15, No. 5, s. 293.
  • [177] Morawski A. W., Kałucki K., Nakashima M., Inagaki M., Modified carbonization of polyacrylonitrile by incorporation of FeCl2 and Fe(NO3)3 — pore structure, Carbon, 1994. Vol. 32, No. 8, s. 1457.
  • [178] Przepiórski J., Enhanced adsorption of phenol from water by ammonia-treated activated carbon, J. Hazard. Mater., 2006, Vol. 135, No. 1—3, s. 453.
  • [179] Drage T. C., Arenillas A., Smith K. M., Pevida C., Piippo S., Snape C. E., Preparation of carbon dioxide adsorbents from the chemical activation of urea-formaldehyde and melamine-formaldehyde resins, Fuel, 2007, Vol. 86, s. 22.
  • [180] Arenillas A., Drage T. C., Smith K., Snape C. E., CO2 removal potential of carbons prepared by co-pyrolysis of sugar and nitrogen containing compounds, J. Anal. Appl. Pyrolysis, 2005, Vol. 74, s. 298.
  • [181] Vlasov V. M., Oskina I. A., Basicity and nucleophicity of aryl-containing N-anions, Russ. J. Org. Chem., 2002, Vol. 38, s. 1705.
  • [182] El-Sayed Y., Bandosz T. J., Acetaldehyde adsorption on nitrogen containing activated carbons, Langmuir, 2002, Vol. 18, s. 3213.
  • [183] Lizzio A. A., DeBarr J. A., Effect of surface area and chemisorbed oxygen on the SO3 adsorption capacity of activated char, Fuel, 1996, Vol. 75, No. 13, s. 1515.
  • [184] Lizzio A. A., DeBarr J. A., The Mechanism of SO2 Removal by Carbon, Energy & Fuels, 1997, Vol. 11, s. 284.
  • [185] Raymundo-Pinero E., Cazorla-Amorós D., Salinas-Martinez de Lecea C., Linares-Solano A., Factors controling the SO2 removal by porous carbons: relevance of the SO2 oxidation step, Carbon, 2000, Vol. 38, s. 335.
  • [186] Raymundo-Pinero E., Cazorla-Amorós D., Linares-Solano A., Temperature programmed desorption study on the mechanism of SO2 oxidation by activated carbon and activated carbon fibres, Carbon, 2001, Vol. 39, s. 231.
  • [187] Daley M. A., Mangun C. L., DeBarr J. A., Riha S., Lizzio A. A., Donnals G. L., Economy J., Adsorption of SO2 onto oxidized and heat-treated activated carbon fibers (ACFS), Carbon, 1997, Vol. 35, No. 3, s. 411.
  • [188] Guo J., Lua A. C., Characterization of adsorbent prepared from oil-palm shell by CO2 activation for removal of gaseous pollutants, Mater. Lett., 2002, Vol. 55, No. 5, s. 334.
  • [189] Boldyreff B., Issinger O. G., Tsuji K., Shiraishi I., Combined desulfurization, denitrification and reduction of air toxics using activated coke — 1. Activity of activated coke, Fuel, 1997. Vol. 76, No. 6, s. 549.
  • [190] Shirahama N., Moon S. H., Choi K. H., Enjoji T., Kawano S., Korai Y., Tanoura M., Mochida I., Mechanistic study on adsorption and reduction of NO2 over activated carbon fibers, Carbon, 2002, Vol. 40, s. 2605.
  • [191] Mochida I., Shirahama N., Kawano S., Korai Y., Yasutake A., Tanoura M., Fujii S., Yoshikawa M., NO oxidation over activated carbon fiber (ACF). Part 1. Extended kinetics over a pitch based ACF of very large surface area, Fuel, 2000, Vol. 79, No. 14, s. 1713.
  • [192] Yang J., Mestl G., Herein D., Schlogl R., Find J., Reaction of NO with carbonaceous metarials 2. Effect of oxygen on the reaction of NO with ashless carbon black, Carbon, 2000, Vol. 38, s. 729.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0048-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.