PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Size-dependent growth kinetics of vitamin C crystals in water solutions of L(+)-ascorbic acid with the addition of methanol and ethanol

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Growth kinetics of vitamin C crystals during the batch mass crystallization process in L(+)-ascorbic acid - methanol - ethanol - water system was determined. The linear growth rate values were estimated on the basis of the product crystal size distributions. The kinetic model of the continuous process in a MSMPR crystallizer was adopted for the batch mode description according to Nyvlt's conception, taking the sizedependent growth (SDG) rate effects into consideration. The kinetic parameter values were determined with a Rojkowski hyperbolic SDG model. A good compatibility between the experimental product crystal population density distributions and the SDG model predictions was observed. The interpretation of the kinetic data was presented and discussed.
Rocznik
Strony
60--65
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
Bibliografia
  • 1. Boudrant, J. (1990). Microbial processes for ascorbic acid biosynthesis: a review. Enzyme Microb.Technol. 12, 322 - 329.
  • 2. Davies, M. B., Austin, J. & Partridge, D. (1991). Vitamin C: Its chemistry and biochemistry. Cambridge, UK: The Royal Society of Chemistry.
  • 3. Reichstein, T. & Grussner, A. (1934). A good synthesis of L-ascorbic acid (Vitamin C). Helv. Chim. Acta 17, 311 - 328.
  • 4. Šnajdman, L. O. (1973). Proizvodstvo vitaminov. Moskva, Russia: Piščevaja promyšlennost.
  • 5. Paul, E. L., Tung, H. H. & Midler M. (2005). Organic crystallization processes. Powder Technol. 150, 133 - 143. DOI: 10.1016/j.powtec.2004.11.040.
  • 6. Matynia, A. & Wierzbowska, B. (1986). Solubility and nucleation of ascorbic acid in water. Przem. Chem. 65, 613 - 615.
  • 7. Matynia, A. & Wierzbowska, B. (1986). The influence of some factors on the yield of ascorbic acid crystallization from aqueous solutions. Przem. Chem. 65, 672 - 674.
  • 8. Matynia, A. & Wierzbowska, B. (1987). Studies on the quality of ascorbic acid crystals obtained from aqueous solutions. Przem. Chem. 66, 288 - 289.
  • 9. Bodor, B., Halasz, S. & Vassanyi, I. (1993). Crystallization parameters influencing size, habit and purity of vitamin C. In: Proceedings of the 12th Symposium on Industrial Crystallization, Z. H. Rojkowski (Ed.) (pp. 4.065 - 4.070). Warsaw, Poland.
  • 10. Bodor, B. & Dodony, I. (1995). Crystallization of vitamin C under different experimental conditions. Hung. J. Ind. Chem. 23, 289 - 291.
  • 11. Bodor, B. & Lakatos, B. G. (1999). Crystal growth of L-ascorbic acid in programmed batch cooling crystallization. Hung. J. Ind. Chem. 27, 297 - 300.
  • 12. Freitas, A. M.B. & Giulietti, M. (2002). Crystallization of L-ascorbic acid from aqueous solutions. In: Proceedings of the 15th Symposium on Industrial Crystallization, A. Chianese (Ed.) Vol. 1, No. 232. Sorrento, Italy.
  • 13. Omar, W. & Ulrich, J. (2006). Effect of the addition of alcoholic miscible co-solvents on the properties of ascorbic acid in its supersaturated aqueous solution. Cryst. Res. Technol. 41, 431 - 436. DOI: 10.1002/crat.200510601.
  • 14. Omar, W. (2006). Effect of solvent composition on crystallization process of ascorbic acid. Chem. Eng. Technol. 29, 119 - 123. DOI: 10.1002/ceat.200500283.
  • 15. Suprunov, N. A., Lymar, A. P., Varentsov, V. V., Streltsov, V. V. & Smirnov N. Ju. (1994). Linear growth rate of ascorbic acid crystals during crystallization from water - alcohol solutions. Massov. Kristall. 3, 45 - 50.
  • 16. Matynia, A., Wierzbowska, B., Bechtold, Z. & Kozak, E. (1999). Nucleation of vitamin C. In: Proceedings of the 14th Symposium on Industrial Crystallization, CD-ROM No. 0090. Cambridge, UK: Inst. Chem. Eng.
  • 17. Matynia, A., Wierzbowska, B. & Bechtold, Z. (1998). Kinetics of nucleation and crystal growth for L(+)-ascorbic acid in aqueous solution with methanol, ethanol or isopropanol. Inż. Ap. Chem. 37(6), 3 - 7.
  • 18. Matynia, A., Wierzbowska, B. & Szewczyk, E. (2000). Crystal growth of L(+)-ascorbic acid in a batch crystallizer. Pol. J. Chem. Technol. 2(1), 14 - 18.
  • 19. Matynia, A. & Wierzbowska, B. (1987). Obtaining crystalline vitamin C from water - methanol solutions. Inż. Ap. Chem. 26(4), 15 - 18.
  • 20. Wierzbowska, B., Matynia, A., Piotrowski, K. & Koralewska, J. (2007). Solubility and nucleation in L(+)-ascorbic acid - methanol - ethanol - water system. Chem. Eng. Proc. 46, 351-359. DOI: 10.1016/j.cep.2006.07.005.
  • 21. Piotrowski, K., Wierzbowska, B., Koralewska, J. & Matynia, A. (2006). Neural model of the vitamin C solubility in a four-compound miscible system: L(+)-ascorbic acidmethanol-ethanol-water. In: Proceedings of 17th International Congress of Chemical and Process Engineering CHISA, CD-ROM, No. 288. Prague, Czech Republic: Proc. Eng. Publisher.
  • 22. Piotrowski, K., Wierzbowska, B., Koralewska, J. & Matynia, A. (2006). Influence of methanol and ethanol on vitamin C crystallization temperature - neural network model. Pol. J. Chem. Technol. 8(4), 23 - 26.
  • 23. Matynia, A., Wierzbowska, B., Szewczyk, E. & Bechtold, Z. (2001). Growing of vitamin C crystals in the system: L(+)-ascorbic acid - methanol - ethanol - water. Inż. Ap. Chem. 40(5), 23 - 24.
  • 24. Wierzbowska, B., Matynia, A., ćwiertnia, E. & Bechtold, Z. (2004). Quality of vitamin C crystals in the L(+)-ascorbic acid-methanol-ethanol-water system. Inż. Ap. Chem. 43(4/5), 48 - 49.
  • 25. Wierzbowska, B., Matynia, A., Bechtold, Z. & Małasińska, M. (2004). Crystallization capacity in the L(+)-ascorbic acid - methanol - ethanol - water system. Inż. Chem. Proc. 25, 1771 - 1776.
  • 26. Wierzbowska, B., Koralewska, J., Matynia, A. & Piotrowski, K. (2006). Attempts to estimate the linear growth rate of vitamin C crystals. Inż. Ap. Chem. 45(4), 152 - 153.
  • 27. Wierzbowska, B., Piotrowski, K., Koralewska, J. & Matynia, A. (2008). Growth kinetics of vitamin C in L(+)-ascorbic acid - methanol - ethanol - water system: size-independent growth model approach. Chem. Biochem. Eng. Q. 22 (in press).
  • 28. Nývlt, J., Söhnel, O., Matuchová, M. & Broul, M. (1985). The kinetics of industrial crystallization. Prague, Czech Republic: Academia.
  • 29. Garside, J., Mersmann, A., & Nývlt, J. (1990). Measurement of crystal growth rate. München, Germany: European Federation of Chemical Engineering - Working Party on Crystallization.
  • 30. Mullin, J. W. (1992). Crystallization. Oxford, UK: Butterworth - Heinemann.
  • 31. Rojkowski, Z. & Synowiec J. (1991). Krystalizacja i krystalizatory. Warsaw, Poland: WNT.
  • 32. Randolph, A. D. & Larson, M. A. (1988). Theory of particulate processes: analysis and techniques of continuous crystallization. New York, USA: Academic Press.
  • 33. Machej, K. & Piotrowski K. (2001). Review and comparision of kinetic equations for mass crystallization design purposes. Inż. Ap. Chem. 40(5), 17 - 19.
  • 34. Rojkowski, Z. (1978). New hyperbolic empirical model of size dependent crystal growth. Bulletin de L'Academie Polonaise des Sciences - Serie des sciences chimiques. 26, 265 - 270.
  • 35. Myerson, A. S. (1993). Handbook of industrial crystallization. Stoneham, MA, USA: Butterworth-Heinemann.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0047-0045
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.