PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of fly ash agglomerates in the sorption of arsenic

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The scope of this contribution was to investigate in detail an application of fly ash adsorbent for the removal of arsenite ions from a dilute solution. The experiments have been carried out using fly ash from black coal burning power plant "Siersza" and brown coal burning power plant "Turów" (Poland), which was wetted, then mixed and tumbled in the granulator with a small amount of cement to increase the mechanical strength of agglomerates. The measurements of arsenic adsorption from the aqueous solution were carried out in the flask (with shaking), as well as in the column (with circulation), in order to compare two different methods of contacting waste with adsorbent. The adsorption isotherms of arsenic were determined for granulated material, using the Freundlich model. Kinetics studies indicated that the sorption follows a pseudo-first-order (PFO) model (Lagergren) and the Elovich-type model.
Słowa kluczowe
Rocznik
Strony
37--41
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
autor
autor
autor
autor
autor
Bibliografia
  • 1. Leist M., Casey R. J., Caridi D.: The management of arsenic wastes: problems and prospects, J. Hazardous Mat, B67(2000)125 - 138.
  • 2. Deliyanni E. A, Nalbandian L., Matis K. A.: Adsorptive removal of arsenites by a nanocrystalline hybrid surfactant-akaganeite sorbent, J. Colloid Interface Sci., 302(2006)458 - 466.
  • 3. Mohan D., Pittman C. U.: Arsenic removal from water/wastewater using adsorbents - A critical review, J. Hazardous Mat, 142(2007)1 - 53.
  • 4. Singh T. S. and Pant K. K.: Solidification/stabilization of arsenic containing solid wastes using portland cement, fly ash and polymeric materials, J. Hazardous Mat, B131(2006)29 - 36.
  • 5. Aguilar-Carrillo J. Garrido F., Barrios L., Garcia-Gonzalez M. T.: Sorption of As, Cd and Tl as influenced by industrial by-products applied to an acidic soil: Equilibrium and kinetics experiments, Chemosphere, 65 (2006) 2377 - 2387.
  • 6. Ugurlu A.: Leaching characteristic of fly ash, Environmental Geology, vol. 46, pp. 890 - 895, 2004.
  • 7. Twardowska I., Szczepańska J.: Solid waste: terminological and long-term environmental risk assessment problems exemplified in a power plant fly ash study, The Science of the Total Environment, Vol. 285, pp. 29 - 51, 2002.
  • 8. Misra M., Yang K., Mehta R. K.: Application of fly ash in the agglomeration of reactive mine tailings, J. Hazardous Mat. 51 (1996) 181 - 192.
  • 9. Reijnders L.: Disposal, uses and treatments of combustion ashes: a review, Resources, Conservation and Recycling, 43 (2005) 313 - 336.
  • 10. Suchecki T. T.: Zeolites from fly ashes, [in Polish] Ossolineum, 2005.
  • 11. Sarbak Z., Stańczyk A., Kramer-Wachowiak M.: Characterization of surface properties of various fly ashes, Powder Technology, 145 (2004) 82 - 87.
  • 12. Drąg E. B: Zeolitization of fly ash (in Polish), Proccedings of XII Zeolites Forum, Ciążeń, 19 - 23 July 2005, 37 - 42.
  • 13. Molina A., Poole C.: A comparative study using two methods to produce zeolites from fly ash, Minerals Engineering, vol. 17, pp. 167 - 173, 2004.
  • 14. Nowak W., Majchrzak-Kucęba I.: Studies of zeolites synthesized from fly ashes (in Polish), Chemia i Inżynieria Ekologiczna, T.9, Nr 5 - 6, pp. 633 - 637, 2002.
  • 15. Polowczyk I., Drąg E., Bastrzyk A., Sadowski Z.: Application of spherical agglomeration process in formation of adsorbents from fly ash, Pol. J. Chem. Technol., 8, 4, 95 - 99, 2006.
  • 16. Vassilev V. V., Vassileva C. G.: Methods for characterization of composition of fly ashes from coal-fired power stations: a critical overview, Energy & Fuels, Vol. 19, No. 3 (2005) 1084 - 1098.
  • 17. Cho H., Dalyoung O., Kwanho K.:A study on removal characteristics of heavy metals from aqueous solution by fly ash, J. Hazardous Mat, B127 (2005)187 - 195.
  • 18. Phenrat T., Marhaba T. F., Rachakornkij M.: A SEM and X-ray study for investigation of solidified/stabilized arsenic-iron hydroxide sludge, J. Hazardous Mat, B118 (2005) 185 - 195.
  • 19. Moon D. H.: et al., Arsenic immobilization by calcium-arsenic precipitates in lime treated soils, Sci. Total Environ, 330 (2004) 171 - 185.
  • 20. Chuanyong J., Korfiatis G. P., Meng X.: Immobilization mechanisms of arsenate in iron hydroxide sludge stabilized with cement, Environ. Sci. Technol., 37 (2003) 5050 - 5056.
  • 21. Vandecasteele C., Dutre V., Geysen D., Wauters G.: Solidification/stabilisation of arsenic bearing fly ash from the metallurgical industry. Immobilisation mechanism of arsenic, Waste Management 22 (2002) 143 - 146.
  • 22. Iyer R. S., Scott J. A.: Power station fly ash - a review of value-added utilization of the construction industry, Resources, Conservation and Recycling, 31 (2001) 217 - 228.
  • 23. Lorenzen L., van Deventer J. S. J., Landi W. M.: Factors affecting the mechanism of the adsorption of arsenic species on activated carbon, Minerals Engineerings, Vol. 8, No. 4/5, pp. 557 - 569, 1995.
  • 24. Giergiczny Z.: The role of calcium and silicous fly ash in the formulation of modern binders and cementous materials' properties (in Polish), Cracow University of Technology, Cracow 2006.
  • 25. Hycnar J. J.: Factors influencing physical, chemical and functional properties of solid products from fluidized bed fuels combustion, Wydawnictwo Górnicze, Katowice 2006.
  • 26. Amaratunga L. M.: Cold-bond agglomeration of reactive pyrrhotite tailings for backfill using low cost binders: gypsum β-hemihydrate and cement, Minerals Engineering, Vol. 8, No. 12, pp. 1455 - 1465, 1995.
  • 27. Amaratunga L. M., Hmidi N.: Cold-bond agglomeration of gold mill tailings for backfill using gypsum beta-hemihydrate and cement as low cost binders, Canadian Metallurgical Quarterly, Vol. 36, No. 4, pp. 283 - 288, 1997.
  • 28. Pietsch W.: Agglomeration in industry. Occurrence and applications, Wiley, 2005, p.80.
  • 29. Paszek A.: Research on the utilization of the waste zinc sludge, Pol. J. Chem. Technol., 8, 3, 156 - 157, 2006.
  • 30. Ho Y. S., Ng J. C. Y., McKay G.: Kinetics of pollutant sorption by biosorbents: review, Separation Purification Methods, Vol. 29, No.2 (2000) 189 - 232.
  • 31. Staisz J., Rajchel B., Konieczyński J.: PIXE and RBS determination of trace elements in grain fractions of dust emitted from power-plant boilers, Archives of Environmental Protection, 2004, 30(1), 65 - 78.
  • 32. Mazur J., Konieczyński J.: Distribution of trace elements in granulometric fractions of fly-ash emitted from power station (in Polish), Wydawnictwo Politechniki Śląskiej, Gliwice 2004.
  • 33. Do D. D.: Adsorption analysis: equilibria and kinetics, Imperial College Press, London, 1998, pp. 50 - 57.
  • 34. Deliyanni E. A., Peleka E. N., Matis K. A.: Removal of zinc ion from water by sorption onto iron-based nanoadsorbent, J. Hazardous Mat, 141 (2007)176 - 184.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0045-0037
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.