PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Oddziaływanie strumienia kropel i powietrza na powierzchnię ciała stałego

Autorzy
Identyfikatory
Warianty tytułu
EN
Effect of a droplet stream and air on the surface of a solid body
Języki publikacji
PL
Abstrakty
PL
W niniejszej rozprawie skoncentrowano się przede wszystkim na analizie procesu oddziaływania strumienia kropel z powierzchnią ciała stałego w zakresie temperatur powierzchni ścianki niższych od temperatury nasycenia cieczy lub bliskich jej. Na podstawie literatury, uzupełnionej wynikami badań doświadczalnych, dokonano szczegółowej analizy procesu rozlewania się i odparowania kropli cieczy z powierzchni ciała stałego do "nieruchomego" powietrza atmosferycznego. W pracy opisano także szczegółowo proces rozlewania się i odparowania kropli cieczy z powierzchni ciała stałego, gdy układ kropla-ścianka omywany jest strumieniem powietrza.
EN
The work presents hydrodynamic and thermal processes that occur during the contact of a droplet stream and air with the solid body. The above processes are applied in technologies of coating surfaces of solid bodies with various substances, as well as in processes of cooling the heated surfaces of products and installations. The work consists of 9 chapters, literature on the subject, and annex. Chapter 1 contains a brief characteristic of two-phase flows, as well as aims and scope of the work, Chapter 2 presents methods of droplet formation, and physical mechanisms due to separation of droplets on the surface of solid body. Chapter 3 deals with mathematical description of the two-phase flow consisting of droplets and mixture of air and vapor. Chapter 4 is the basic part of work. The chapter deals with conditions of reaction between droplets and environment. Depending on the dynamics of droplet's dropping and of initial surface temperature, classification of behavior of particular droplets after their contact with the surface of solid body has been made. The chapter deals with physical mechanisms that are responsible for the processes of droplet*s spreading and evaporating. It gives a detailed presentation of droplet's evaporation process in conditions when surface is wetted by droplet. It has been proposed to divide the whole process into phases. Characteristic parameters describing the droplet*s spreading process (wetting angles, wetting coefficients) have been defined. The chapter shows the mathematical description of the droplet's spreading process on the surface of solid body. and it presents the own model of the phenomenon of spreading of a single droplet. The model has been compared with simplified models of the other authors. The chapter deals also with the effect of parameters of humid air on the process of wetting the surface of a solid body by droplet, and it presents the own model of the phenomenon. The model refers to the effect of microscopic phenomena on the process of droplet's spreading on the surface. The scope of this part of the work covers also the phenomenon of convective motion of liquid in the droplet and on its free surface. The main phase of droplet evaporation has been divided into sub-phases, depending on presence of the borderline between flow structures on the free surface of droplet. Chapter 5 presents the discussion on thermal exchange between the stream of air with droplets and the surface of solid body. Theoretical models of the phenomenon of evaporation of a single droplet present on the surface with temperature lower than the bubble point of the liquid are given a detailed presentation in the chapter, as well as the own model of the phenomenon of evaporation of a single droplet with relation to the spreading coefficient. Chapter 6 gives information about the working stands, methods, and results of experimental research carried out by author. The research concerns determination of effect of characteristic parameters on phenomena of spreading and evaporation of a single droplet. The chapter gives also the analysis of effect of the velocity of air stream in the channel on the droplefs evaporation time, and analysis of conditions of its movement on the surface. The work gives the comparison of obtained results of own experimental research with calculation results obtained from theoretical models (Chapter 7). Chapters 8 and 9 contain recapitulation conclusions. The work is closed with literature on the subject and with annex which refers to methodology of map plotting for presence of droplet structure and liquid film on the surface.
Słowa kluczowe
Twórcy
  • Katedra Techniki Cieplnej Politechniki Szczecińskiej
Bibliografia
  • 1. ABU-ZAID M: An experimental study of the evaporation of gasoline and diesel droplets on hot surfaces. International Communications in Heat and Mass Transfer, 1994, Vol. 21, No. 2, s. 315 —322.
  • 2. ALLEN R. F.: The role of surface tension in splashing. Journal of Colloid and Interface Science, 1975, Vol. 51, No. 2, s. 350 — 351.
  • 3. AMON C. H.: Thermal management of high-heat-flux devices edifice: embedded droplet impingement for integrated cooling of electronics. In: Proceedings of the ASME-ZSITS International Thermal Science Seminar, Bled, Slovenia, June 11 — 14, 2000, s. 48 — 55.
  • 4. ANDREANI M., YADIGAROGLU G.: A 3-D Eulerian-Lagrangian model of dispersed flow film boiling including a mechanistic description of the droplet spectrum evolution — I. The thermal- -hydraulic model. International Journal of Heat and Mass Transfer, 1997, Vol. 40, No. 8. s. 1753 — 1772.
  • 5. ATTINGER D., ZHAO Z., POULIKAKOS D.: An experimental study of molten microdroplet surface deposition and solidification: transient behaviour and wetting angle dynamics. Transactions of the ASME. Journal of Heat Transfer, 2000, Vol. 122, s. 544 — 556.
  • 6. AVEDISIAN C. T., FATEHI M.: An experimental study of the Leidenfrost evaporation characteristics of emulsified liquid droplets. International Journal of Heat and Mass Transfer. 1988, Vol. 31, No. 8, s. 1587— 1603.
  • 7. AVEDISIAN C. T., KOPLIK J.: Leidenfrost boiling of methanol droplets on hot porous/ceramic surfaces. International Journal of Heat and Mass Transfer, 1987, Vol. 30, No. 2, s. 379 — 393.
  • 8. AZIZ S., CHANDRA S.: Impact, recoil and splashing of molten metal droplets. International Journal of Heat and Mass Transfer, 2000, Vol. 43, s. 2841 — 2857.
  • 9. BAUMEISTER K. J., HAMILL T. D., SCHOESSOW G. J.: A generalized correlation of vaporization times of drops in film boiling on a flat plate. In: Proceedings of the 3rd International Heat Transfer Conference, Chicago, August 7 — 12, 1966, Vol. 4, s. 66 — 73.
  • 10. BAUMEISTER K. J., HAMILL T. D., SCHWARTZ F. L., SCHOESSOW G. J.: Film boiling heat transfer to water drops on a flat plate. In: Proceedings of the 8th National Heat Transfer Conference, Los Angeles, August 8 — 11,1965, s. 52 — 61.
  • 11. BAUMEISTER K. J., SCHOESSOW G. J.: Diffusive and radiative effects on vaporization times of drops in film boiling. AIChE Symposium Series. Heat Transfer, 1973, Vol. 69, No. 131, s. 10 — 17.
  • 12. BAUMEISTER K. J., SCHOESSOW G. J., CHMIEl.EWSKI CH. E.: Film boiling of mercury droplets. The Canadian Journal of Chemical Engineering, 1977, Vol. 55, s. 521 — 526.
  • 13. BAUMEISTER K.J., SIMON F. F.: Leidenfrost temperature — its correlation for liquid metals, cryogens, hydrocarbons and water. Transactions of the ASME, Journal of Heat Transfer, 1973, Vol. 95, No. 2, s. 166— 172.
  • 14. BELL K. J.: The Leidenfrost phenomenon: A survey. Chemical Engineering Progress Symposium Series, 1967, Vol. 63, No. 79, s. 73 — 82.
  • 15. BELL K. J, GOTTFRIED B. S.: Film boiling of spheroidal droplets. Industrial and Engineering Chemistry Fundamentals, 1966, Vol. 5, No. 4, s. 561 — 568.
  • 16. BEN-AMMAR F., KAVIANY M., BARBER J. R.: Heat transfer during impact. International Journal of Heat and Mass Transfer, 1992, Vol. 35, No. 6, s. 1495 — 1506.
  • 17. BERNARDIN J. D., MUDAWAR I., WALSH B., FRANSES E. I.: Contact angle temperature dependence for water droplets on practical aluminium surfaces. International Journal of Heat and Mass Transfer, 1997, Vol. 40, No. 5, s. 1017 — 1033.
  • 18. BERNARDIN J. D., STEBBINS C. J., MUDAWAR I.: Effects of surface roughness on water droplet impact history and heat transfer regimes. International Journal of Heat and Mass Transfer, 1997, Vol. 40, No. 1, s. 73 — 88.
  • 19. BERNARDIN J. D., STEBBINS C. J., MUDAWAR I.: Mapping of impact and heat transfer regimes of water drops impinging on a polished surface. International Journal of Heat and Mass Transfer, 1997, Vol. 40, No. 2, s. 247 — 267.
  • 20. BERTOLA V.: Controlling drop impact on cold and hot surfaces by polymer additives. In: Proceedings of the 3rd International Symposium on Two-Phase Flow Modelling and Experimentation, Pisa, Italy, September 22 — 24, 2004 (CD).
  • 21. BETTA V., MAZZEI P., NASO V., VANTOLI R.: Further contributions to the study of the Leidenfrost phenomenon. Transactions of the ASME, Journal of Heat Transfer, 1979, Vol. 101, No.4, s. 612 —616.
  • 22. BIAŁOSTOCKI S. J., ZAPAŁOWICZ Z.: Ocena możliwości wykorzystania strumienia kropel wody do wytwarzania pary wewnątrz silnika parowego. W: Materiały konferencyjne XVI Zjazdu Termodynamików, Kołobrzeg — Koszalin 1996, t.1, s. 85 — 94.
  • 23. BIENIASZ B.: Naprężenie zwilżające działające na pęcherzyk parowy w czasie wrzenia. Mechanika Teoretyczna i Stosowana, 1971, Vol. 9, No. 4, s. 529 — 540.
  • 24. BIENIASZ B.: Rzeczywisty układ sił działających u podstawy pęcherzyka parowego. Mechanika Teoretyczna i Stosowana, 1973, Vol. 11, No. 2, s. 159 — 164.
  • 25. BIKERMAN J. J.: Sliding of drops from surfaces of different roughnesses. Journal of Colloid Science, 1950, Vol. 5, No. 4, s. 349 — 359.
  • 26. BITUKOV V. K., KOLODEŽNOV V. N.: Ob učete teploobmena sferoida židkosti s okružauščej sredoj pri âvlenii Lejdenfrosta. Inženerno-Fizičeskij Žurnal, 1989, t. 56. No. 2, s. 247 — 253.
  • 27. BLAKE T. D., CLARKE A., DE CONINCK J., DE RUIJTER M., VOUÉ M.: Droplet spreading: a microscopic approach. Colloids and Surfaces. A: Physicochemical and Engineering Aspects, 1999, Vol. 149, s. 123 — 130.
  • 28. BOINOVICH L. B., EMELYANENKO A. M.: Forces due to dynamic structure in thin liquid films. Advances in Colloid and Interface Science, 2002, Vol. 96, s. 37 — 58.
  • 29. BOLLE L., MOUREAU J. C: Spray cooling of hot surface. Multiphase Science and Technology, 1982, Vol. l, s. 1—97.
  • 30. BONACINA C., COMINI G., DEL GIUDICE S.: Evaporation of atomized liquids on hot surfaces. Letters in Heat and Mass Transfer, 1975, Vol. 2, s. 401 — 406.
  • 31. BONACINA C., DEL GIUDICE, S., COMINI G.: Dropwise evaporation. Transactions of the ASME, Journal of Heat Transfer, 1979, Vol. 101, No. 3, s. 441 — 446.
  • 32. BRANDENBERGER H., NÜSSLI D., PIËCH V., WIDMER F.: Monodisperse particle production: A method to prevent drop coalescence using electrostatic forces. Journal of Electrostatics, 1999, Vol. 45, s. 227 —238.
  • 33. BRETSZNAJDER S.: Własności gazów i cieczy. Warszawa, PWN 1962.
  • 34. BUEVIČ U. A., MANKEVIČ V. N.: K teorii âvlenia Lejdenfrosta. Teplofizika Vysokih Temperatur, 1982, t. 20, No. 6, s. 1136—1144.
  • 35. BUSSMANN M., AZIZ S. D. MOSTAGHIMI J., CHANDRA S.: Modelling the fingering of impacting droplets. In: Proceedings of the 6th Annual Conference. CFD Society of Canada, Quebec City, Canada, June 7 — 9, 1998, IV, s. 43 — 48.
  • 36. BUSSMANN M., MOSTAGHIMI J., CHANDRA S.: On a three-dimensional volume tracking model of droplet impact. Physics of Fluids, 1999, Vol. 11, No. 6, s. 1406 — 1417.
  • 37. BUTTERWORTH D., HEWITT G. F.: Two-phase flow and heat transfer. Oxford, Oxford University Press 1977, ISBN 0-19-851715-7.
  • 38. CHANDRA S., AVEDISIAN C. T.: On the collision of a droplet with a solid surface. Proceedings of Royal Society of London A, 1991, Vol. 432, s. 13 — 41.
  • 39. CHANDRA S., AZIZ S. D.: Leidenfrost evaporation of liquid nitrogen droplets. Transactions of the ASME, Journal of Heat Transfer, 1994, Vol. 116, No. 4, s. 999 — 1006.
  • 40. CHANDRA S., DI MARZO M., QIAO Y. M., TARTARINI P.: Effect of liquid-solid contact angle on droplet evaporation. Fire Safety Journal, 1996, Vol. 27, s. 141 — 158.
  • 41. CHANDRA S., QIAO Y. M.: Experiments on adding a surfactant to water drops boiling on a hot surface. Proceedings of Royal Society of London A, 1997, Vol. 453, s. 673 — 689.
  • 42. CHAVES H., KUBITZEK A. M., OBERMEIER F.: Dynamic processes occurring during the spreading of thin liquid films produced by drop impact on hot walls. International Journal Heat and Fluid Flow, 1999, Vol. 20, s. 470 — 476.
  • 43. CHEN J. C., HSU K. K.: Heat transfer during liquid contact on superheated surfaces. Transactions of the ASME. Journal of Heat Transfer, 1995, Vol. 117, No. 3, s. 693 — 697.
  • 44. CHEN Q., RAME E., GAROFF S.: Experimental studies on the parametrization of liquid spreading and dynamic contact angles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, Vol. 116, s. 115 — 124.
  • 45. CHILTON T. H., COLBURN A. P.: Mass transfer (absorption) coefficients. Prediction data on heat transfer fluid motion. Industrial Engineering Chemistry, 1934, Vol. 26, s. 1183 — 1187.
  • 46. CHO P., LAW C. K., MIZIMOTO M.: Effect of pressure on the micro-explosion of water/oil emulsion droplets over a hot plate. Transactions of the ASME. Journal of Heat Transfer, 1991. Vol. 113, No. 1, s. 272— 274.
  • 47. CHUNG M., RANGEL R. H.: Parametric study of metal droplet deposition and solidification process including contact resistance and undercooling effects. International Journal of Heat and Mass Transfer, 2001, Vol. 44, s. 605 — 618.
  • 48. CIOFALO M., DI PIAZZA I., BRUCATO V.: Investigation of the cooling of hot walls by liquid water sprays. International Journal of Heat and Mass Transfer, 1999, Vol. 42, No. 1, s. 1157—1175.
  • 49. COSSALI G. E., COGHE A., MARENGO M.: The impact of single drop on a wetted solid surface. Experiments in Fluids, 1997, Vol. 22, s. 463 — 472.
  • 50. COX T. L., YAO S. C: Heat transfer sprays of large drops impacting on high temperature surfaces. Transactions of the ASME, Journal of Heat Transfer, 1999, Vol. 121, No. 2, s. 446 — 450.
  • 51. CUI Q., CHANDRA S., McCAHAN S.: The effect of dissolving gases or solids in water droplets boiling on a hot surface. Transactions of the ASME, Journal of Heat Transfer, 2001, Vol. 123, No. 2, s. 719 —728.
  • 52. CUMO M., FARELO G. E.: Heated wall-droplet interaction for two-phase flow heat transfer in liquid deficient region. In: Proceedings of the Symposium on Two Phase Flow Dynamics, Eindhoven Euroatom, 1967, t. II, s. 1325 — 1357.
  • 53. DABORA E. K..: Production of monodisperse sprays. The Review of Scientific Instruments, 1967, Vol. 38, No. 4, s. 502 — 506.
  • 54. DAS GUPTA S., SCHONBERG J.A., WAYNER JR. P. C.: Investigation of an evaporating extended meniscus based on the augmented Young-Laplace equation. Transactions of the ASME. Journal of Heat Transfer, 1993, Vol. 115, No. 3, s. 201 — 208.
  • 55. DEB S., YAO S-CH.: Heat transfer analysis of impact dilute spray on surfaces beyond the Leidenfrost temperature. In: Proceedings of the National Heat Transfer Conference, Pittsburgh, Pensylwania, August, 1987, 87-HT-l, s. 1 — 8.
  • 56. DENDA J., KOBAYASHI M., IWASHITA S., FUJIMOTO H.: Modeling of diesel spray impinging on flat wall. JSME International Journal, Ser. B, 1996, Vol. 39, No. 4, s. 859 — 865.
  • 57. DI MARZO M., EVANS D. D.: Dropwise evaporative cooling of high thermal conductivity materials. Heat and Technology, 1987, Vol. 5, No. 1 —2, s. 125 — 136.
  • 58. DI MARZO M., EVANS D. D.: Evaporation of a water droplet deposited on a hot high thermal conductivity surface. Transactions of the ASME, Journal of Heat Transfer, 1989, Vol. 111, No. 1, s. 210 — 213.
  • 59. DI MARZO M., KIDDER C. H., TARTARINI P.: Infrared thermography of dropwise evaporative cooling of semifinite solid subjected to radiant heat input. Experimental Heat Transfer, 1992, Vol. 5, s. 101 — 114.
  • 60. DI MARZO M., TARTARINI P., LIAO Y., EVANS D., BAUM H.: Evaporative cooling due to gently deposited droplet. International Journal of Heat and Mass Transfer, 1993, Vol. 36, No. 17. s. 4133 — 4139.
  • 61. Dincer I., Dost S.: A technique for determining surface temperatures of geometrical objects using center temperature values during cooling. International Communications in Heat and Mass Transfer, 1994, Vol. 21, No. 6, s. 871 — 880
  • 62. DUIGHAN M. R., IRVINE JR. T. F.: Measurements of the film boiling bubble parameters on a horizontal plate. International Communications in Heat and Mass Transfer, 1989, Vol. 16, No. 3, s. 355 —366.
  • 63. DUSSAN E. B.: On the spreading of liquids on solid surfaces: static and dynamic contact lines. Annual Review of Fluid Mechanics, 1979, Vol. 11, s. 371 — 400.
  • 64. DUSSAN E. B.: The moving contact line: the slip boundary condition. Journal of Fluid Mechanics, 1976, Vol. 77, part. IV, s. 665—684.
  • 65. DUSSAN E. B., DAVIS S. H.: On the motion of a fluid-fluid interface analog a solid surface. Journal of Fluid Mechanics, 1974, Vol. 65, part I, s. 71 —95.
  • 66. DUSSAN E. B., TAO-PING CHOW R.: On the ability of drops or bubbles to stick to non —horizontal surfaces of solids. Journal of Fluid Mechanics, 1983, Vol. 137, s. 1 —29.
  • 67. EHRHARD P., DAVIS S. H.: Non-isothermal spreading of liquid drops on horizontal plates. Journal of Fluid Mechanics, 1991, Vol. 229, s. 365 — 388.
  • 68. ERIKSSON K. E., ROBERT K. H.: From Big Bang to sustainable societies. Reviews in Oncology, 1991, Vol. 4, No. 2, s. 5 — 14.
  • 69. FUJIMOTO H., SHIRAISHI H., HATTA N.: Evolution of liquid/solid contact area of a drop impinging on a solid surface. International Journal of Heat and Mass Transfer, 2000, Vol. 43, s. 1673— 1677.
  • 70. FUKAI J., SHIIBA Y., YAMAMOTO T., MIYATAKE O., POLULIKAKOS D., MEGARIDIS C. M., ZHAO Z.: Wetting effects on the spreading of a liquid droplet colliding with a flat surface: experiment and modelling. Physics of Fluids, 1995, Vol. 7, No. 2, s. 236 — 247.
  • 71. GAJEWSKI A.: Pomiar dynamicznego kąta zwilżania przy zastosowaniu zmodyfikowanej metody Langmuira. W: Materiały XII Sympozjum Wymiany Ciepła i Masy, Kraków 2004, s. 299 — 302.
  • 72. GAJEWSKI A., TRELA M.: Badanie dynamicznego kąta zwilżania dla grawitacyjnej strugi cieczy. W: Materiały Zjazdowe XVI Zjazdu Termodynamików, Kołobrzeg — Koszalin 1996, t. I, s. 301—310.
  • 73. GAJEWSKI A., TRELA M.: Dynamiczny kąt zwilżania grawitacyjnych strug cieczy. Zeszyty Naukowe IMP PAN w Gdańsku, 2000, z. 518, nr 1477.
  • 74. GANlĆ B.N., ŠIKALO Š.: Droplet-surface interactions. In: Proceedings of the ASME — ZSITS International Thermal Science Seminar II, Bled, Slovenia, June 13— 16, 2004, s. 121 — 132.
  • 75. GELDORP W. I., RIOBOO R., JAKIRLIĆ S., MUZAFERIJA S., TROPEA C.: Numerical and experimental drop impact on solid dry surfaces. In: Proceedings of the 8th International Conference on Liquid Atomisation Spray Systems, Pasadena, CA, USA, July 2000 (CD).
  • 76. GODELSKI E. S., BELL K. J.: The Leidenfrost phenomenon for binary liquid solutions. In: Proceedings of the 3rd International Heat Transfer Conference, AIChE, Chicago 1966, Vol. 4, 1966, s.51—58.
  • 77. GOTTFRIED B. S., BELL K. J.: Film boiling of spheroidal droplets. Industrial and Engineering Chemistry Fundamentals, 1966, Vol. 5, No. 4, s. 561 — 568.
  • 78. GOTTFRIED B. S., LEE C. J., BELL K. J.: The Leidenfrost phenomenon: film boiling of liquid droplets on flat plate. International Journal of Heat and Mass Transfer, 1966, Vol. 9, s. 1167— 1187.
  • 79. GRANT G., BRENTON J., DRYSDALE D.: Fire suppression by water sprays. Progress in Energy and Combustion Science, 2000, Vol. 26, s. 79 — 130.
  • 80. GROENDES V., MESLER R.: Measurement of transient surface temperatures beneath Leidenfrost water drops. In: Proceedings of the 7th International Heat Transfer Conference, Munich 1982, Vol. 4, PB20, s. 131 — 136.
  • 81. GRÖBER, ERK, GRIGULL U.: Wärmeübertragung. Berlin — Göttingen — Heidelberg, Springer--Verlag 1957.
  • 82. GUEYFFIER D., ZALEWSKI Z.: Full Navier-Stokes simulations of droplets impact on thin liquid films. In: Proceedings of the 3rd International Conference on Multiphase Flows (ICMF'98), Lyon, France, 8 — 12 June, 1998 (CD).
  • 83. GUHMAN A. A., VOLYNEC A. Z., ROŽDESTVENSKIJ A. V., RODIONOV S. N.: O temperature razrežennogo potoka kapel' otražennyh ot nagretoj poverhnosti. Inženerno-Fizičeskij Žurnal, 1984, t. 49, No. 5, s. 731 — 736.
  • 84. HAFERL S., POULIKAKOS D.: Experimental investigation of the transient impact fluid dynamics and solidification of a molten microdroplet pile-up. International Journal of Heat and Mass Transfer, 2003, Vol. 46, s. 535 — 550.
  • 85. HALEY P., MIKSIS M. J.: The effect of the contact line on droplet spreading. Journal of Fluid Mechanics, 1991, Vol. 223, s. 57 — 81.
  • 86. HALL W. B.: The stability of Leidenfrost drops. In: Proceedings of the 5th International Heat Transfer Conference, Tokyo 1974, Vol. 4, Paper B. 3.10, s. 125 — 129.
  • 87. HEALY W. M., HALVORSON P. J., HARTLEY J. G., ABDEL-KHALIK S. I.: A critical heat flux correlation for droplet impact cooling at low Weber numbers and various ambient pressures. International Journal of Heat and Mass Transfer, 1998, Vol. 41, No. 6 — 7, s. 975 — 978.
  • 88. HEALY W. M., HARTLEY J. G., ABDEL-KHALIK S. I.: Comparison between theoretical models and experimental data for the spreading of liquid droplets impacting a solid surface. International Journal of Heat and Mass Transfer, 1996, Vol. 39, No. 14, s. 3079 — 3082.
  • 89. HEALY W. M., HARTLEY J. G., ABDEL-KHALIK S. I.: Surface wetting effects on the spreading of liquid droplets impacting a solid surface at low Weber numbers. International Journal of Heat and Mass Transfer, 2001, Vol. 44, s. 235 — 240.
  • 90. HEFFINGTON S., GLEZER A., TILLERY S., SMITH M.: Vibration-induced two-phase cooling technologies for high power thermal management. In: Proceedings of the 3rd International Symposium on Two-Phase Flow Modelling and Experimentation, Pisa, September 22 — 24, 2004 (CD).
  • 91. HOBLER T.: Dyfuzyjny ruch masy i absorbery. Warszawa, PWN 1976.
  • 92. HOBLER T.: Ruch ciepła i wymienniki. Warszawa, WNT 1986, ISBN 83-204-0699-4.
  • 93. HÖHMANN C., STEPHAN P.: Microscale temperature measurement at an evaporating liquid meniscus. In: Proceedings of the Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics, Thessaloniki 2001, s. 1141 — 1145.
  • 94. HOLM F. W., GOPLEN S. P.: Heat transfer in the meniscus thin-film transition region. Transactions of the ASME Journal of Heat Transfer, 1979, Vol. 101, No. 3, s. 543 — 547.
  • 95. HUH CH., SCRIVEN L. E.: Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. Journal of Colloid and Interface Science, 1971, Vol. 35, No. 1, s. 85 — 101.
  • 96. HURST CH. J., OLSEN D. R.: Conduction through droplets during dropwise condensation. Transactions of the ASME, Journal of Heat Transfer, 1973, Vol. 95, No. 1, s. 12 — 20.
  • 97. INADA S., YANG W. J.: Film boiling heat transfer for saturated drops impinging on a heating surface. International Journal of Heat and Mass Transfer, 1994, Vol. 37, No. 16, s. 2588 — 2591.
  • 98. INADA S., YANG W. J.: Mechanisms of miniaturization of sessile drops on a heated surface. International Journal of Heat and Mass Transfer, 1993,Vol. 36, No. 6, s. 1505 — 1515.
  • 99. INADA I., YANG W. J., UCHIYAMA S., SONG J.: Heat transfer effectiveness of saturated drops in the nonwetting regime impinging on a heated surface. JSME International Journal, Ser. B. 2000, Vol. 43, No. 3, s. 468 — 477.
  • 100. ISAČENKO V. P., KUŠNYREV V. I.: Strujnoe ohlaždenie. Energoatomizdat, Moskva 1984, ISBN 2303010000-356174-84.
  • 101. ISRAELACHVILI J. N.: Intermolecular and surface forces. London, Academic Press 1991, ISBN 0-12-375181-0.
  • 102. ITO T., TAKATA Y., MOUSA M. M.: Studies on the water cooling of hot surfaces (Analysis of spray cooling in the region associated with film boiling). JSME International Journal, Series II, 1992, Vol. 35, No. 4, s. 589 — 598.
  • 103. IWASZKO P.: Określenie warunków fragmentaryzacji kropli cieczy. Praca dyplomowa napisana pod kierunkiem dr. Z. Zapałowicza. Politechnika Szczecińska, Szczecin 2005, maszynopis.
  • 104. JIANG T., OH S., SLATTERY J. C.: Correlation for dynamic contact angle. Journal of Colloid and Interface Science, 1979, Vol. 69, s. 74 — 77.
  • 105. JONAS T., K.UBITZEK A., OBERMEIER F.: Transient heat transfer and break-up mechanisms of drops impinging on heated walls. In: Proceedings of the Experimental Heat Transfer. Fluid Mechanics and Thermodynamics, Brussels, Belgium 1997, Vol. 2, s. 1263 — 1270.
  • 106. KANDLIKAR S. G., STEINKE M. E.: Contact angles and interface behaviour during rapid evaporation of liquid on a heated surface. International Journal of Heat and Mass Transfer, 2002, Vol. 45, s. 3771—3780.
  • 107. KARRAKER K. A., RADKE C. J.: Disjoining pressures, zeta potentials and surface tensions of aqueous non-ionic surfactant/electrolyte solutions: theory and comparison to experiment. Advances in Colloid and Interface Science, 2002, Vol. 96, s. 231 — 264.
  • 108. KAWKA T., KORNORAKI W., ZAPAŁOWICZ Z.: Badania fotograficzne procesu zamarzania kropel cieczy na sublimującej powierzchni. W: Materiały IX Sympozjum Wymiany Ciepła i Masy, Augustów 1995, t.1, s. 443 — 451.
  • 109. KAWKA T., KORNORAKI W., ZAPAŁOWICZ Z.: Wstępna analiza termodynamiczna i próba eksperymentalnego zamrażania cieczy w postaci kuleczek na powierzchni ciała silnie sublimującego. W: XXVII Sesja Naukowa Komitetu Technologii i Chemii Żywności PAN. Referaty, Szczecin 27 — 28.06.1996, s. 139—142.
  • 110. KIM H.-Y., CHUN J.-H.: The recoiling of liquid droplets upon collision with solid surfaces. Physics of Fluids, 2001, Vol. 13, No. 3, s. 643 — 658.
  • 111. KIM H.-Y., FENG Z. C., CHUN J.-H.: Instability of liquid jet from a droplet upon collision with a solid surface. Physics of Fluids, 2000, Vol. 12, No. 3, s. 531 — 541.
  • 112. KLASSEN M., DI MARZO M., SIRKJS J.: lnfrared thermography of dropwise evaporative cooling. Experimental Thermal and Fluid Science, 1992, Vol. 5, s. 136— 141.
  • 113. KOWAI.CZYK J.: Badania doświadczalne zwilżania ogrzewanej powierzchni przez zespół kropel. Praca dyplomowa wykonana pod kierunkiem dr. inż. Zbigniewa Zapałowicza. Politechnika Szczecińska, Szczecin 1997, maszynopis.
  • 114. KOWALEWSKI T. A.: Wybrane przepływy ze swobodną powierzchnią — strugi i krople. Prace IPPT, 1995, Nr 3.
  • 115. LEIDENFROST J. G.: On the fixation of water in diverse fire. International Journal of Heat and Mass Transfer, 1966, Vol. 9, s. 1153 — 1166.
  • 116. LI D.: Drop size dependence of contact angles and line tensions of solid-liquid systems. Colloids and Surfaces A. Physicochemical and Engineering Aspects. 1996,Vol. 116, s. 1—23.
  • 117. LIN F. Y. H., LI D.: The effect of surface heterogeneity on the drop size dependence of contact angles. Chemical Engineering Science, 1995, Vol. 50, No. 16, s. 2633 — 2639.
  • 118. LINDBI.AD N. R., SCHNEIDER J. M.: Production of uniform-sized liquid droplets. Journal of Science Instruments, 1965, Vol. 42, s. 635 — 638.
  • 119. LIU L., YAO S-C.: Heat transfer analysis of droplet flow impinging on a hot surface. In: Proceedings of the 7th International Heat Transfer Conference, Munich 1982, Vol. 4, PB25, s. 161 — 166.
  • 120. LIU W., WANG G. X., MATTHYS E. F.: Thermal analysis and measurements for a molten drop impacting on a substrate: cooling, solidification and heat transfer coefficient. International Journal of Heat and Mass Transfer, 1995, Vol. 38, No. 8, s. 1387—1395.
  • 121. LORENZ J. J., MIKIC B. B.: The effect of thermocapillary flow on heat transfer in dropwise condensation. Transactions of the ASME, Journal of Heat Transfer, 1970. Vol. 92, No. 1.s.46 —52.
  • 122. MADEJSKI J.: Solidification of droplets on a cold surface. International Journal of Heat and Mass Transfer, 1976, Vol. 19, No. 9, s. 1009 — 1013.
  • 123. MAJUMDAR A., MEZIC I.: Instability of ultra-thin water films and the mechanism of droplet formation on hydrophilic surfaces. Transactions of the ASME, Journal of Heat Transfer. 1999, Vol. 121, No. 3, s. 965— 970.
  • 124. MAKINO K., MICHIYOSHI I.: Discussions of transient heat transfer to a water droplet on heated surfaces under atmospheric pressure. International Journal of Heat and Mass Transfer, 1987, Vol. 30, No. 9, s. 1895 — 1905.
  • 125. MAKINO K., MICHIYOSHI I.: The behaviour of a water droplet on a heated surfaces. International Journal of Heat and Mass Transfer, 1984, Vol. 27, No. 5, s. 781 — 791.
  • 126. MANN R. F., WALKER W. W.: The vaporization of small binary drops on a flat plate at maximum heat flux. The Canadian Journal of Chemical Engineering, 1975, Vol. 53, s. 487 — 493.
  • 127. MARKWORTH A. J., SAUNDERS J. H.: An improved velocity field for the Madejski splat-quench solidification model. International Journal of Heat and Mass Transfer, 1992, Vol. 35, No. 7, s. 1836—1837.
  • 128. MARMANIS H., THORODDSEN S. T.: Scaling of the fingering pattern of an impacting drop. Physics of Fluids, 1996, Vol. 8, No. 6, s. 1344 — 1346.
  • 129. MARMUR A.: Contact-angle hysteresis on heterogeneous smooth surfaces: theoretical comparison of the captive bubble and drop methods. Colloids and Surfaces A. Physiochemical and Engineering Aspects, 1998, Vol. 136, s. 209 — 215.
  • 130. MARMUR A.: Equilibrium contact angles: theory and measurement. Colloids and Surfaces A. Physiochemical and Engineering Aspects, 1996, Vol. 116, s. 55 — 61.
  • 131. MARTYNUK M. M.: Rol' peregreva kapel' v processe nestacionarnogo kapel'nogo ohlaždeniâ vysokotemperaturnoj stenki. lnženerno-Fizičeskij Žurnal, 1986, t. 51, No. 1, s. 128 — 136.
  • 132. MICHIYOSHI I., MAKINO K..: Heat transfer characteristics of evaporation of liquid droplet on heated surface. International Journal of Heat and Mass Transfer, 1978, Vol. 21, s. 605 — 613.
  • 133. MIKIC B. B.: Mechanism of dropwise condensation. International Journal of Heat and Mass Transfer, 1969, Vol. 12, s. 1311 — 1323.
  • 134. MIKIELEWICZ J., MIKIELEWICZ D.: Impingement and heat transfer of gas-liquid spray on a horizontal surface. In: 1st Conference, Recent Development in Multiphase Flow, Stawiska, June 18 — 20, 1999,s. 199 — 215.
  • 135. MIKIELEWICZ J., MIKIELEWICZ D.: Modelowanie wymiany ciepła w uderzających strugach. W: Materiały konferencyjne XVII Zjazdu Termodynamików, Kraków 1999, s. 843 — 853.
  • 136. MIKIELEWICZ J., TRELA M.: Początek ruchu kropli po powierzchni ciała stałego wywołany ruchem gazu, Zeszyty Naukowe IMP PAN w Gdańsku, 1982, z. 137, nr 1020.
  • 137. MITROVIC J.: The flow and heat transfer in the wedge-shaped liquid film formed during the growth of a vapour bubble. International Journal of Heat and Mass Transfer, 1998. Vol. 41, No. 12, s. 1771 — 1785.
  • 138. MONATEGNA M.: Computation of asymmetrical drops at rest on surfaces with regular roughness according to the Wenzel equation. In: Proceedings of the 3rd International Symposium on Two-Phase Flow Modelling and Experimentation, Pisa, September 22 — 24, 2004 (CD).
  • 139. MOSDORF R., PONIEWSKI M: Statistic analysis of the boiling curve for a droplet. International Journal of Heat and Mass Transfer, 1987, Vol. 30, No. 7, s. 1479 — 1485.
  • 140. MUNDO C. H. R. SOMMERFELD M., TROPEA C.: Droplet-wall collisions: experimental studies of the deformation and breakup process. International Journal of Multiphase Flow, 1995, Vol. 21, No. 2, s. 151 — 173.
  • 141. NATH B., TALAY I.: Sustainable development. In: Man, science, technology and sustainable development. Vubpress 1990, s. 17 — 54, ISBN 90-5487-115-6.
  • 142. NGUYEN T. K., AVEDISIAN C. T.: Numerical solution for film evaporation of a spherical liquid droplet on an isothermal and adiabatic surface. International Journal of Heat and Mass Transfer, 1987, Vol. 30, No. 7, s. 1497 — 1509.
  • 143. NIGMATULIN B. I., VASILIEV N. I., GUGUCHKIN V. V.: Interaction between liquid droplets and heated surface. Wärme und Stoffübertragung, 1993, Vol. 28, No. 6, s. 313 — 319.
  • 144. NISHIO S., HIRATA M.: Direct contact between a liquid droplet and high temperature solid surface. In: Proceedings of the 6th International Heat Transfer Conference, Toronto, Canada. August 7 — 11, 1978, Vol. 1, PB-23, s. 245 — 250.
  • 145. ORZECHOWSKI Z., PRYWER J.: Rozpylanie cieczy. Warszawa, WNT 1991.
  • 146. ORZECHOWSKI Z., PRYWER J.: Rozpylanie cieczy w urządzeniach energetycznych. Warszawa, WNT 1994, ISBN 83-204-1736-8.
  • 147. PAIS M. R., CHOW L. C., MAHEFKEY E. T.: Surface roughness and its effects on the heat transfer mechanism in spray cooling. Transactions of the ASME, Journal of Heat Transfer, 1992, Vol. 114, No. l, s. 211—219.
  • 148. PASANDIDEH-FARD M., BHOLA R., CHANDRA S., MOSTAGHIMI J.: Deposition of tin droplets on a steel plate: simulations and experiments. International Journal of Heat and Mass Transfer, 1998, Vol.41, No. 19, s. 2929 —2945.
  • 149. PASANDIDEH-FARD M., QIAO Y. M., CHANDRA S., MOSTAGHIMI J.: Capillary effects during droplet impact on a solid surface. Physics of Fluids, 1996, Vol. 8, No. 3, s. 650 — 659.
  • 150. PATEL. B. M., BELL K. J.: The Leidenfrost phenomenon for extended liquid masses. Chemical Engineering Progress Symposium Series. Heat Transfer, 1966, Vol. 62, No. 6, s. 62 — 71.
  • 151. PATREJKO A.: Badanie odparowania kropel wody do strumienia powietrza z podgrzewanej powierzchni. Praca magisterska wykonana pod kierunkiem Z. Zapałowicza. Politechnika Szczecińska, Szczecin 1992, maszynopis.
  • 152. PEDERSON C. O.: An experimental study of the dynamic behaviour and heat transfer characteristics of water droplets impinging upon a heated surface. International Journal of Heat and Mass Transfer, 1970, Vol. 13, s. 369 —381.
  • 153. PENG X. F., PETERSON G. P., WANG B. X.: The effect on plate temperature on the onset of wetting. International Journal of Heat and Mass Transfer, 1992, Vol. 35, No. 6. s. 1605 — 1613.
  • 154. PETERSON G. P., HA J. M.: Capillary performance of evaporating flow in micro grooves: an approximate analytical approach and experimental investigation. Transactions of the ASME, Journal of Heat Transfer, 1998, Vol. 120, s. 743 — 751.
  • 155. Podstawowe procesy inżynierii chemicznej. Praca zbiorowa pod red. Z. Ziółkowskiego. Warszawa, PWN 1982, s. 291 — 293.
  • 156. POHORECKI R., WROŃSKI S.: Kinematyka i termodynamika procesów inżynierii chemicznej. Warszawa, WNT 1979, ISBN 83-204-0040-6.
  • 157. PONIEWSKI M.: Wrzenie błonowe i przejściowe kropli cieczy — badania eksperymentalne. Archiwum Termodynamiki, 1985, Vol. 6, Nr 3 — 4, s. 147 — 165.
  • 158. POTASH JR. M., WAYNER JR. P. C.: Evaporation from a two-dimensional extended meniscus. International Journal of Heat and Mass Transfer, 1972, Vol. 15, s. 1851 — 1863.
  • 159. PUSCHMANN F., SPECHT E., SCHMIDT J.: Evaporation quenching with atomized sprays. In: Proceedings of the 3rd European Thermal Sciences Conference, Heidelberg 2000, s. 1071 — 1074.
  • 160. QIAO Y. M., CHANDRA S.: Boiling of droplets on a hot surface in low gravity. International Journal of Heat and Mass Transfer, 1996, Vol. 39, No. 7, s. 1379— 1393.
  • 161. QIAO Y. M., CHANDRA S.: Experiments on adding a surfactant to water drops boiling on a hot surface. Proceedings of Royal Society London A, 1997, Vol. 453, s. 673 — 689.
  • 162. QIAO Y. M., CHANDRA S.: Spray cooling enhancement by addition of a surfactant. Transactions of the ASME. Journal of Heat Transfer, 1998, Vol. 120, s. 92 — 98.
  • 163. RANGE K., FEUILLEBOIS F.: Influence of surface roughness on liquid drop impact. Journal of Colloid and Interface Science, 1998, Vol. 203, s. 16 — 30.
  • 164. RAZNJEVIC K.: Tablice cieplne z wykresami. Warszawa, WNT 1966.
  • 165. REGAB A. M.: Heat transfer into the rivulet. Praca doktorska. Politechnika Gdańska, Gdańsk 1983, maszynopis.
  • 166. REGAB A. M., MIKIELEWICZ J.: Prediction of rivulet heat transfer at the liquid film breakdown. Prace IMP w Gdańsku, 1995, z. 98, s. 75 — 86.
  • 167. REIN M.: Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dynamics Research, 1993, Vol. 12, s. 61 — 93.
  • 168. RICHARD C., BAYER I. S., MEGARIDIS C. M.: Contact angle behavior during impingement of molten solder droplets on metal plates. In: Proceedings of the Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics, Thessaloniki 2001, s. 1521 — 1534.
  • 169. Ruiz O. E., BLACK W. Z.: Evaporation of water droplets placed on a heated horizontal surface. Transactions of the ASME. Journal of Heat Transfer, 2002, Vol. 124, s. 854 — 863.
  • 170. RYBNIK R., TRELA M.: Influence of substrate material and surface roughness on the contact angle of sessile drops. In: Tagungsmaterialen VII Internationales Symposium Wärmeaustausch und Erneuerbare Energiequellen, Szczecin — Świnoujście 7 — 9.09.1998, s. 315 — 324.
  • 171. RYLEY D. J., KHOSHAIM B. H: A new method of determining the contact angle mode by a sessile drop upon a horizontal surface (sessile drop contact angle). Journal of Colloid and Interface Science, 1977, Vol. 59, No. 2, s. 243 — 251.
  • 172. RYMKIEWICZ J.: Przybliżona metoda wyznaczania wpływu gęstości rozmieszczenia kropel na intensywność ich odparowania z płaskiej, podgrzewanej powierzchni. Zeszyty Naukowe IMP PAN w Gdańsku, 1992, z. 357, nr 1281.
  • 173. RYMKIEWICZ J., ZAPAŁOWICZ Z.: Analysis of the evaporation process for water droplet on flat heated surface. International Communications in Heat and Mass Transfer, 1993, Vol. 20, No. 5, s. 687 — 697.
  • 174. SADHAL S. S., PLESSET M.S.: Effect of solid properties and contact angle in dropwise condensation and evaporation. Transactions of the ASME, Journal of Heat Transfer, 1979. Vol. 101, No. 2, s. 48 — 54.
  • 175. SATCUNANATHAN S.: Evaporation rates of liquid droplets evaporating in the ,,spheroidal" state on a hot surface. Journal of Mechanical Engineering Science, 1968, Vol. 10, No. 5, s. 438 — 441.
  • 176. SAWYER M. L., JETER S. M., ABDEL-KHALIK S. I.: A critical heat flux correlation for droplet impact cooling. International Journal of Heat and Mass Transfer, 1997, Vol. 40, No. 9, s.2123 — 2131.
  • 177. SCHNEIDER J. M., HENDRICKS C. D.: Source of uniform-sized liquid droplets. The Review of Scientific Instruments, 1964, Vol. 35, No. 10, s. 1349— 1350.
  • 178. SCHNEIDER J. M., LINDBLAD N. R., HENDRICKS C. D.: An apparatus to study the collision and coalescence of liquid aerosols. Journal of Colloid Science, 1965, Vol. 20, s. 610 — 616.
  • 179. SCHOESSOW G.J., BAUMEISTER K. J.: Mass diffusivity effects on droplets in film boiling. AIChE Symposium Series, 1972, Vol. 68, No. 118, s. 156 — 161.
  • 180. SCHONBERG J. A., DAS GUPTA S., WAYNER JR, P. C.: An augmented Young-Laplace model of an evaporating meniscus in a microchannel with high heat flux. Experimental Thermal and Fluid Science, 1995, Vol. 10, s. 163 — 170.
  • 181. SCIFFER. S.: A phenomenological model of dynamic contact angle. Chemical Engineering Science, 2000, Vol. 55, s. 5933 — 5936.
  • 182. SEKI M., KAWAMURA H., SANOKAWA K.: Transient temperature profile of a hot wall due to an impinging liquid droplet. Transactions of the ASME, Journal of Heat Transfer, 1978, Vol. 100. No. 1, s. 167—169.
  • 183. SEMICZEK-SZULC S.: Badania eksperymentalne kąta zwilżania strug spływających po powierzchni metali. Raport nr41/78. Politechnika Wrocławska, Wrocław 1978, maszynopis.
  • 184. SEMICZEK-SZULC S.: Zwilżanie powierzchni metali. Raport nr R-72177. Politechnika Wrocławska, Wrocław 1976, maszynopis.
  • 185. SEN A. K., LAW C. K.: On slowly evaporating droplet near a hot plate. International Journal of Heat and Mass Transfer, 1984, Vol. 27, No. 8, s. 1418 — 1421.
  • 186. SENDA J., KOBAYASHI M., IWASHITA S., FUJIMOTO H.: Modeling of diesel impinging on flat wall. JSME International Journal, Ser. B, 1996, Vol. 39, No. 4, s. 859 — 865.
  • 187. SHAKERI S., CHANDRA S.: Splashing of molten tin droplets on a rough steel surface. International Journal of Heat and Mass Transfer, 2002, Vol. 45, s. 4561 — 4575.
  • 188. SHARP D. H.: An overview of Rayleigh-Taylor instability. Physica, 1984, D 12, s. 3 — 18.
  • 189. SHIH A. T., MEGARIDIS C. M.: Thermocapillary flow effects on convective droplet evaporation. International Journal of Heat and Mass Transfer, 1996, Vol. 39, No. 2, s. 247 — 257.
  • 190. SHOJI M., ZHANG X. Y.: Study of contact angle hysteresis (in relation to boiling surface wettability). JSME International Journal, Ser. B., 1994, Vol. 37, No. 3, s. 560 — 567.
  • 191. ŠlKALO Š.: Analysis of droplet impact onto horizontal and inclined surfaces. Aachen, Shaker Verlag 2003, ISBN 3-8322-1466-6.
  • 192. ŠlKALO Š., GANIĆ E. N., TROPEA C.: Dynamic of wetting line of a spreading droplet. W: Proceedings of the ASME — ZSIS International Thermal Science Seminar II, Bled, Slovenia, June 13 — 16, 2004, s. 259 — 266.
  • 193. SOBOLEV V. V.: Formation of splat morphology during thermal spraying. Materials Letters, 1998, Vol. 36, s. 123 — 127.
  • 194. SOBOLEV V. V., GUILEMANY J. M.: Analysis of splat formation during flattening of thermally sprayed droplets. Materials Letters, 1996, Vol. 29, s. 185 — 190.
  • 195. SOBOLEV V. V., GUILEMANY J. M.: Droplet — substrate impact interaction in thermal spraying. Materials Letters, 1996, Vol. 28, s. 331 — 335.
  • 196. SOBOLEV V. V., GUILEMANY J. M.: Effect of droplet impact angle on flattening of splat in thermal spraying. Materials Letters, 1997, Vol. 32, s. 197 — 201.
  • 197. SOBOLEV V. V., GUILEMANY J. M.: Effect of substrate deformation on droplet flattening in thermal spraying. Materials Letters, 1998, Vol. 35, s. 324 — 328.
  • 198. SOBOLEV V. V., GUILEMANY J. M.: Effect of wave processes on splat formation during thermal spraying. Materials Letters, 2000, Vol. 42, s. 321 —325.
  • 199. SOBOLEV V. V., GUILEMANY J. M.: Formation of splats during thermal spraying of composite powder particles. Materials Letters, 2000, Vol. 42, s. 46 — 51.
  • 200. SOBOLEV V. V., GUILEMANY J. M.: Influence of droplet impact angle on droplet-substrate mechanical interaction in thermal spraying. Materials Letters, 1998, Vol. 33, s. 315 — 319.
  • 201. SOBOLEV V. V., GUILEMANY J. M.: Influence of solidification on the flattening of droplets during thermal spraying. Materials Letters, 1996, Vol. 28, s. 71 — 75.
  • 202. SOBOLEV V. V., GUILEMANY J. M.: Influence of wetting and surface effects on splat formation during thermal spraying. Materials Letters, 1998, Vol. 37, s. 132 — 137.
  • 203. SOBOLEV V. V., GUILEMANY J. M., MARTIN A. J.: Investigation of droplet flattening during thermal spraying. Surfaces and Coatings Technology, 1997, Vol. 89, s. 82 — 89.
  • 204. STANISZEWSKI B.: Termodynamika. Warszawa, PWN 1978, s. 149.
  • 205. STANISZ.EWSKI B.: Wymiana ciepła. Podstawy teoretyczne. Warszawa, PWN 1980, ISBN 83-01-00243-3.
  • 206. STEPHAN K.: Influence of dispersion forces on phase equilibria between thin liquid films and their vapour. International Journal of Heat and Mass Transfer, 2002, Vol. 45, s. 4715 — 4725.
  • 207. STEPHAN P. C., BUSSE C. A.: Analysis of the heat transfer coefficient of grooved heat pipe evaporator walls. International Journal of Heat and Mass Transfer, 1992, Vol. 35, No. 2, s. 383— 391.
  • 208. STYRICOVICH M. A., BARYSHEV J. V., TSIKLAURI G. V., GRIGORIEVA M. E.: The mechanizm of heat and mass transfer between a water drop and a heated surface. In: Proceedings of the 6th Int. Heat Transfer Conference, Toronto, Canada, August 7 — 11, 1978. Vol. 5, PB-22, s. 239 — 243.
  • 209. ŠPAKOVSKIJ R. P.: K opredeleniu temperatury poverhnosti ispareniâ. Inženerno-Fizičeskij Žurnal, 1995, t. 68, No. 4, s. 693 — 694.
  • 210. TAKATA Y., HIDAKA S., CAO J. M., NAKAMURA T., YAMAMOTO H., MASUDA M., ITO T., WATANABE T.: Boiling and evaporation heat transfer from a TiO2 — coated surface. In: Proceedings of the Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, Thessaloniki 2001, s. 203—208.
  • 211. TAMURA Z., TANASAWA Y.: Evaporation and combustion of a drop contacting with a hot surface. In: 7th Symposium on Combustion, London and Oxford 1958, London, Butterworth's Scientific Publications 1959, s. 509 — 522.
  • 212. TAN NGUEN TYONG, KLEVCOV A. V., ČILIKINA N. V.: K teorii deformacii kapli na gorizontal'noj poverhnosti. Teploenergetika, 1989, No. 10, s. 60 — 61.
  • 213. TARTARINI P., DI MARZO M.: Dropwise evaporative cooling in radiative field. In: Proceedings of the 10th International Heat Transfer Conference, Brighton, UK 1994, Vol. 6, 14-TP-23, s. 277 — 282.
  • 214. TARTARINI P., DI MARZO M.: The solid-liquid interfacial conditions for dropwise evaporative cooling. International Journal of Heat Technology, 1990, Vol. 10, No. 3 —4, s. 130-144.
  • 215. THORODDSEN S. T., SAKAKIBARA J.: Evolution of the fingering pattern of an impacting drop. Physics of Fluids, 1998, Vol. 10, No. 6, s. 1359 — 1374.
  • 216. TIO K.K., SADHAL S. S.: Thermal construction resistance: effects of boundary conditions and contact geometries. International Journal of Heat and Mass Transfer, 1992, Vol. 35, No. 6, s. 1533 — 1544.
  • 217. TOMIYAMA A., KATAOKA I., ZUN I., SAKAGUCHI T.: Drag coefficients of single bubbles under normal and micro gravity conditions. JSME International Journal, Ser. B, 1998. Vol. 41, No. 2, s. 472—479.
  • 218. TRAPAGA G., SZEK.ELY J.: Mathematical model of the isothermal impingement of liquid droplets in spraying processes. Metallurgical Transactions, 1992, Vol. 22B, s. 701 — 718.
  • 219. TRELA M.: Wymiana ciepła i masy w przepływie mgłowym. Zeszyty Naukowe IMP PAN w Gdańsku, 1983, z. 154, nr 1069.
  • 220. TRELA M.: Zagadnienia termo-hydrodynamiczne fazy ciekłej na ściance w przepływie dwufazowym. Zeszyty Naukowe IMP PAN w Gdańsku, 1989, z. 293, nr 1214.
  • 221. TRELA M., MIKIELEWICZ J.: Ruch i wymiana ciepła cienkich warstw cieczy. Maszyny Przepływowe, t. 23, Wrocław, Ossolineum 1998, ISBN 83-04-04474-9.
  • 222. TSURUTA T., TANAKA H., MASUOKA T.: Condensation/evaporation coefficient and velocity distributions at liquid-vapor interface. International Journal of Heat and Mass Transfer, 1999, Vol. 42, s. 4107 —4116.
  • 223. TSURUTANI K., YAO M., SENDA J., FUJIMOTO H.: Numerical analysis of the deformation process of droplet impinging upon a wall. JSME International Journal, Ser. II, 1990, Vol. 33, No. 3, s. 555 —561.
  • 224. UEDA T., ENOMOTO T., KANETSUKI M.: Heat transfer characteristics and dynamic behavior of saturated droplets impinging on heated vertical surface. Bulletin of the JSME, 1979, Vol. 22, No. 167, s. 724 —732.
  • 225. VAFAEI S.: Modelling of liquid-drop/substrate interactions. PhD Thesis, Resselaer Polytechnic Institute, Troy, New York 2004.
  • 226. VAFAEI S., PODOWSKI M. Z.: Theoretical analysis on the effect of liquid droplet geometry on contact angle. W: Proceedings of the 3rd International Symposium on Two-Phase Flow Modelling and Experimentation, Pisa, September 22 — 24, 2004 (CD).
  • 227. VALIGNAT M. P., BARDON S., VILLETTE S., CAZABAT A. M.: Examples of wetting transition: effect of long and short range interactions. Fluid Phasa Equilibria. 1998, Vol. 150— 151, s. 615—623.
  • 228. VAN CAREY P.: Liquid-vapor phase-change phenomena. Bristol, Hemisphere Publishing Corporation, Taylor&Francis, Pa 1992, ISBN 0-89116-836-2.
  • 229. VINCENT S., ARQUIS E.: Numerical modelling of cooling and solidification of molten particles impacting a solid substrate. In: Proceedings of the 3rd European Thermal Sciences Conference. Heidelberg 2000, s. 441 — 445.
  • 230. VINCENT S., CALTAGIRONE J.P., ARQUIS E.: Numerical simulation of liquid droplet flattening on both solid substrate and liquid film. In: Proceedings of the 2nd International Symposium on Two-Phase Flow Modelling and Experimentation, Pisa, May 23 — 26, 1999, s. 995 — 1002.
  • 231. VOUÉ M., DE CONINCK J.: Spreading and wetting at the microscopic scale: recent developments and perspectives. Acta Materialia, 2000, Vol. 48, s. 4405 — 4417.
  • 232. WACHTERS L. H. J., BONNE H., VAN NOUHUIS H. J.: The heat transfer a hot horizontal plate to sessile water drops in the spheroidal state. Chemical Engineering Science, 1966, Vol. 21. s. 923—936.
  • 233. WACHTERS L. H. J., SMULDERS L., VERMEULEN J. R., KLEIWEG H. C.: The heat transfer from a hot wall to impinging mist droplets in the spheroidal state. Chemical Engineering Science, 1966, Vol. 21, s. 1231 —1238.
  • 234. WACHTERS L. H. J., WESTERLING N. A. J.: The heat transfer from a hot wall to impinging water drops in the spheroidal state. Chemical Engineering Science, 1966, Vol. 21, s. 1047-1056.
  • 235. WALDVOGEL J. M., POULIKAKOS D., WALLACE D.B., MARUSAK R.: Transport phenomena in picoliter size solder droplet dispension. Transactions of the ASME, Journal of Heat Transfer, 1996, Vol. 118, No. l, s. 148—156.
  • 236. WANG CH-H, SUN CH-J, KUO H-CH.: An experimental investigation of heat transfer of a droplet impinging upon a hot surface. International Communications in Heat and Mass Transfer, 1997, Vol.24, No. l, s. 65 — 78.
  • 237. WARRINGTON R. O., MUSSULMAN R. L.: Analysis of a liquid/gas direct contact heat exchanger concept. Journal of Energy, 1983, Vol. 7, No. 6, s. 732 — 734.
  • 238. WAYNER JR. P. C.: A dimensionless number for the contact line evaporative heat sink. Transactions of the ASME, Journal of Heat Transfer, 1989, Vol. 111, No. 3, s. 813 — 815.
  • 239. WAYNER JR. P. C.: Adsorption and capillary condensation at the contact line in change of phase heat transfer. International Journal of Heat and Mass Transfer, 1982, Vol. 25, No. 5, s. 707 — 713.
  • 240. WAYNER JR. P. C.: Intermolecular forces in phase-change heat transfer: 1998 Kern Award Review. AIChE Journal, 1999, Vol. 45, No. 10, s. 2055 — 2068.
  • 241. WAYNER JR. P. C.: Spreading of a liquid film with a finite contact angle by the evaporation/condensation process. Langmuir, 1993, Vol. 9, No. 1, s. 294 — 299.
  • 242. WAYNER JR P. C.: The effect of interfacial mass transport on flow in thin liquid film. Colloids and Surfaces, 1991, Vol. 52, s. 71 — 84.
  • 243. WAYNER JR. P. C.: Thermal and mechanical effects in the spreading of a liquid film due to a change in the apparent finite contact angle. Transactions of the ASME, Journal of Heat Transfer, 1994, Vol. 116, No. 4, s. 938 — 945.
  • 244. WAYNER JR P. C., KAO Y. K., LACROIX L. V.: The interline heat-transfer coefficient of an evaporating wetting film. International Journal of Heat and Mass Transfer, 1976, Vol. 19, s. 487 —492.
  • 245. WAYNER JR. P. C., SCHONBERG J.: Spreading of liquid film on substrate by the evaporation- -absorption process. Journal of Colloid and Interface Science, 1992, Vol. 152. No. 2, s. 507 —520.
  • 246. WELLS M. R., MELTON L. A.: Temperature measurements of falling droplets. Transactions of the ASME, Journal of Heat Transfer, 1990, Vol. 112, No. 4, s. 1008 — 1013.
  • 247. WHALLEY P. B.: Boiling, condensation, and gas-liquid flow. Oxford, Oxford University Press 1987, ISBN 0-19-856-181-4.
  • 248. WIŚNIEWSKI S.: Wymiana ciepła. Warszawa, PWN 1979, ISBN 83-01-00754-0.
  • 249. WOLANSKY G., MARMUR A.: Apparent contact angles on rough surfaces: the Wenzel equation revisited. Colloids and Surfaces A. Physiochemical and Engineering Aspects, 1999, Vol. 156, s. 381—388.
  • 250. XIONG T. Y., YUEN M. C: Evaporation of a liquid droplet on a hot plate. International Journal of Heat and Mass Transfer, 1991, Vol. 34, No. 7, s. 1881 — 1894.
  • 251. YANG W. J.: Mechanics of droplet evaporation on heated surfaces. Letters in Heat Transfer and Mass Transfer, 1978, Vol. 5, s. 151 — 166.
  • 252. YANG W. J., GUO K.H., UEMURA T.: Theory and experiments on evaporating sessile drops of binary liquid mixtures. International Journal of Heat and Mass Transfer, 1989, Vol. 32. No. 7, s. 1197—1205.
  • 253. YEH E. K., NEWMAN J., RADKE C. J.: Equilibrium configurations of liquid droplets on solid surfaces under the influence of thin-film forces. Part 11. Shape calculations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, Vol. 156, s. 525 — 546.
  • 254. YOSHIDA T.: Effect of liquid droplet deformation on the displacement due to airstreams. JSME International Journal, Ser. B, 1998, Vol. 41, No. 4, s. 855 — 862.
  • 255. ZAPAŁOWICZ Z.: An approximate method for calculation of the wetting parameter for horizontal surface. W: Referaty VIII Sympozjum Wymiany Ciepła i Masy, Białowieża 1992, s. 525 — 530.
  • 256. ZAPAŁOWICZ Z.: Analyse des Benetzbarkeitprozesses von einem verdampfenden Tropfen auf waagerrechter Wandoberfläche. In: Tagungsmaterialen, IV Symposium Klimatechnik, Belüftung und Wärmeaustausch im Transportwesen, Szczecin 1992, s. 153 — 158.
  • 257. ZAPAŁOWICZ Z.: Analysis of the process of wetting a horizontal heated surface area by a single water droplet. International Communications in Heat and Mass Transfer, 1995, Vol. 22, No. 5, s. 713 —720.
  • 258. ZAPAŁOWICZ Z.: Analysis of wetting and evaporating of some chosen liquid droplets from a surface which has been overflowed with a stream of air. In: Proceeding of the 6th International Symposium on Heat Exchange and Renewable Energy Sources, Szczecin — Świnoujście 1996, s. 309 —316.
  • 259. ZAPAŁOWICZ Z.: Badania analityczne i doświadczalne odparowania kropel z powierzchni w różnych warunkach. Badania odparowania kropel do strumienia powietrza z podgrzewanej powierzchni. Raport 14/90 (praca wykonana dla IMP PAN w ramach RPBP-02.8, zadanie 2.5.3.2), maszynopis.
  • 260. ZAPAŁOWICZ Z.: Badania doświadczalne rozlewania się dwóch kropel toluenu równocześnie strąconych na poziomą, podgrzewaną powierzchnię ścianki. W: Materiały Konferencyjne XVII Zjazdu Termodynamików, Zakopane, 11 września, 1999, Kraków, t. 4, s. 1625 — 1636.
  • 261. ZAPAŁOWICZ. Z.: Badania fotograficzne i oszacowanie czasu odparowania kropli wody z powierzchni płaskiej ścianki. Prace IMP w Gdańsku, 1990, z. 92, s. 53 — 67.
  • 262. ZAPAŁOWICZ Z.: Comparison of surface wetting coefficients for droplets of water and toluene on the surface overflown by an air stream. In: Zbornik z XII. Medzinarodnej vedeckej konferencje, Aplikacia Experimentálnych a Numerických Metód v Mechanike Tekutin, Oravský Biely Potok, Slonvensko, 25.04 — 26.04.2002, s. 248 — 253.
  • 263. ZAPAŁOWICZ Z.: Conditions for appearance of droplet structure and a liquid film on a horizontal, heated wall surface for chosen liquids. In: Proceedings of the 1st Conference Recent Development in Multiphase Flow, Stawiska, June 18 — 20, 1999, s. 269 — 282.
  • 264. ZAPAŁOWICZ Z.: Conditions for appearance of a droplet structure and liquid film on a horizontal heated wall surface for selected liquids. Archives of Thermodynamics, 2000, Vol. 21, No. 1 —2, s. 73 — 85.
  • 265. ZAPAŁOWICZ Z.: Conditions for appearance of droplet structure for aniline. In: Proceedings of the 2nd International Conference on Heat Transfer and Transport Phenomena in Multiphase Systems, Heat '99, Kielce, Poland, May 18 — 22, 1999, s. 349 — 358.
  • 266. ZAPAŁOWICZ Z.: Conditions for appearance of droplet structure for benzene. In: Progress in Engineering Heat Transfer. Proceedings of the 3rd Baltic Heat Transfer Conference, Gdańsk. Poland, September 22 — 24, 1999, s. 721 — 728.
  • 267. ZAPAŁOWICZ Z.: Conditions for appearance of droplet structure on a horizontal heated surface for water and toluene. In: Zbornik z XII. Medzinarodnej vedeckej konferencie, Aplikácia Experimentálnych a Numerických Metód v Mechanike Tekutin. Rajecké Teplice, Slovensko 27.4 — 28.4.2000, s. 240 — 245.
  • 268. ZAPAŁOWICZ Z.: Conditions for the change of the droplet structure into the water film on a heated wall surface overnflown by a stream of air. In: Proceedings of the 5th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, Thessaloniki, Greece, 24 — 28, September 2001, Vol. 3, s. 1979 — 1984.
  • 269. ZAPAŁOWICZ Z.: Conditions for appearance of water stains on a horizontal. heated surface. In: Tagungsmaterialen VIII International Symposium „ Wärmeaustausch und Erneurbare Energieąuellen ", Szczecin — Łeba, 18 — 20.09.2000, s. 443 — 452.
  • 270. ZAPAŁOWICZ Z.: Critical contact Weber number for toluene droplets dropping onto heated wall surface. Experimental Thermal and Fluid Science, 2002, Vol. 25, s. 523 — 528.
  • 271. ZAPAŁOWICZ Z.: Critical contact Weber number for toluene droplets dropping onto heated wall surface. In: Proceedings of the ASME — ZSITS International Thermal Science Seminar, Bled, Slovenia, June 11 — 14, 2000, s. 369 — 375.
  • 272. ZAPAŁOWICZ Z.: Effect of surrounding parameters, kind and roughness of substrate, and kind of liquid on surface wetting by droplet. In: Proceedings of the 4th International Conference on Transport Phenomena in Multiphase Systems, Gdańsk, Poland, June 26 — 30, 2005, s. 579 — 584.
  • 273. ZAPAŁOWICZ Z.: Effect of thermodynamic parameters of the surrounding air on the dynamic wetting of surface by droplets. Transactions of IFFM, 2004, No. 115, s. 21 — 36.
  • 274. ZAPAŁOWICZ Z.: Einfluss der Fallgeschwindigkeit von Wassertropfen auf den Benetzbarkeitskoeffizienten auf waagerechter angewärmter Wandoberfläche. In: V International Symposium Wärmeaustausch und Regenerative Energieąuellen, Szczecin 1994, s. 299 — 306.
  • 275. ZAPAŁOWICZ Z.: Einfluss der Flüssigkeitsart und Fallgeschwindigkeit von Tropfen auf den Benetzbarkeitskoeffizienten auf waagerechter Wandoberfläche. In: V International Symposium Wärmeaustausch und Regenerative Energieąuellen, Szczecin 1994, s. 307 — 316.
  • 276. ZAPAŁOWICZ Z.: Experimental research on spreading of two water droplets on a horizontal, heated surface. W: Materiały X Sympozjum Wymiany Ciepła i Masy. Świeradów Zdrój, 14 — 18 września, 1998. Prace Naukowe Instytutu Techniki Cieplnej i Mechaniki Płynów Politechniki Wrocławskiej, 1998, nr 53, Seria: Konferencje, nr 9, część II, s. 892 — 899.
  • 277. ZAPAŁOWICZ Z.: Experimentelle Untersuchungen des Benatzbarkeitskoeffizienten von Tropfen auf einer Wandoberfläche. In: Tagungsmaterialen. IV Symposium Klimatechnik, Belüftung und Wärmeaustausch im Transportwesen, Szczecin 1992, s. 159 — 164.
  • 278. ZAPAŁOWICZ Z.: Influence of air velocity on droplet's wetting and evaporating conditions on a flat surface. International Communications in Heat and Mass Transfer, 1994, Vol. 21, No. 3, s. 411 —420.
  • 279. ZAPAŁ0WICZ Z.: Influence of contact angle hysteresis on single droplet evaporation time. W: Materiały IX Sympozjum Wymiany Ciepła i Masy, Augustów 1995, t. II, s. 463 — 471.
  • 280. ZAPAŁOWICZ Z.: Interaction between a single water droplet and a flat, horizontal, hot surface. In: Proceedings of the IMP '97 Conference on Modelling and Design in Fluid-Flow Machinery, Gdańsk, November 18 — 21, 1997, 593 — 600.
  • 281. ZAPAŁOWICZ Z.: Liquid droplet’s movement on the flat surface evoked by a stream of air. In: Proceedings of the 4th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, Brussels, June 2 — 6, 1997, s. 1287 — 1294.
  • 282. ZAPAŁOWICZ Z.: Macroscopic model of droplet spreading over a horizontal surface. Archives of Thermodynamics, 2003, Vol. 24, No. 3, s. 55 — 68.
  • 283. ZAPAŁOWICZ Z.: Metodyka obliczania czasu odparowania do powietrza pojedynczej kropli wody z podgrzewanej płaskiej powierzchni. W: V Polsko-Niemieckie Sympozjum: Nauka dla Praktyki, Gdańsk, 27.10.1994, s. 197 — 200.
  • 284. ZAPAŁOWICZ Z.: Numerical method for calculation of droplet evaporation time from a heated flat surface. In: Proceedings of the 1st International Symposium on Two-Phase Flow Modelling and Experimentation, Rome, Italy, 9 — 11.10.1995, Vol. 1, s. 83 — 90.
  • 285. ZAPAŁOWICZ Z.: Odparowanie grup kropel z płaskiej, poziomej powierzchni ścianki. Sprawozdanie końcowe z realizacji projektu badawczego KBN nr 8 T10 B05014. Szczecin, Politechnika Szczecińska, Szczecin 2001, maszynopis.
  • 286. ZAPAŁOWICZ Z.: Odparowanie kropel z podgrzewanej powierzchni w zastosowaniu do modyfikacji podgrzewu wewnętrznego w turbinach. Praca doktorska, Instytut Maszyn PAN, nr inw. 22113, Gdańsk 1989, maszynopis.
  • 287. ZAPAŁOWICZ Z.: Początek ruchu kropli po podgrzewanej powierzchni ścianki wywołany przepływem powietrza. W: Materiały konferencyjne XV Zjazdu Termodynamików, Gliwice — Kokotek 1993, t. 2, s. 773—778.
  • 288. ZAPAŁOWICZ Z.: Przybliżona metoda wyznaczania czasu odparowania kropli z powierzchni płaskiej. Archiwum Termodynamiki, 1984, Vol. 5, Nr 2 s. 149 — 162.
  • 289. ZAPAŁOWICZ Z.: Spreading of droplets of some chosen liquids on the flat, heated wall surface. In: Proceedings of the 3rd International Conference on Transport Phenomena in Multiphase Systems. Heat 2002. Baranów Sandomierski, Poland June 24 — 27, 2002. Zeszyty Naukowe Politechniki Świętokrzyskiej, 2003, nr 77, s. 63 — 78.
  • 290. ZAPAŁOWICZ Z.: Spreading of two simultaneously dropped water droplets on a horizontal, heated wall surface. In: Proceedings of the 2nd International Symposium on Two-Phase Flow Modelling and Experimentation, Pisa, May 23 — 26, 1999, Vol. 3, s. 1529 — 1536.
  • 291. ZAPAŁOWICZ Z.: Spreading ratio for water droplet. Advances in engineering heat transfer. In: Proceedings of the 2nd Baltic Heat Transfer Conference, Jurmala, Riga, Laatvia, August 21 — 23, 1995, s. 617 —626.
  • 292. ZAPAŁOWICZ Z.: The effect of droplet volume on the droplet spreading ratio. Prace IMP w Gdańsku, 1994, z. 96, s. 3 — 13.
  • 293. ZAPAŁOWICZ Z.: The influence of droplet's volume on the velocity that initiates droplet's motion on the flat surface. In: Proceedings of the International Conference on Heat Transfer with Change of Phase, Kielce, Poland, December 8 — 10, 1996, Part II, s. 265 — 274.
  • 294. ZAPAŁOWICZ Z.: The wetting coefficient for a horizontal heated wall surface. In: Boiling and Condensation: International Proceeding, Riga Technical University, Heat Energy Department. Riga 1998, s. 136—145.
  • 295. ZAPAŁOWICZ Z.: Wartości współczynnika wnikania masy dla kropli wody odparowującej do powietrza wilgotnego z poziomej powierzchni płaskiej, podgrzewanej ścianki. W: Referaty Sympozjum Wymiany Ciepła i Masy, Warszawa — Jabłonna 1986, s. 267 — 272.
  • 296. ZAPAŁOWICZ Z.: Wpływ parametrów powietrza wilgotnego oraz chropowatości na zwilżanie metalowej powierzchni przez kroplę cieczy. W: Materiały XIX Zjazdu Termodynamików, Gdańsk — Sopot 5 — 8.09.2005, s. 415 — 416 i CD.
  • 297. ZAPAŁOWICZ Z.: Wstępne badania odparowania kropel wody do strumienia powietrza z podgrzewanej powierzchni. Zeszyty Naukowe IMP PAN w Gdańsku, 1991, z. 336, nr 1284.
  • 298. ZAPAŁOWICZ Z., KAWKA T., KORNORAKI W.: Zamarzanie kropel wody na powierzchni sublimującego dwutlenku węgla. W: Konferencja Naukowo-Techniczna: Współczesne Problemy w Budowie i Eksploatacji Maszyn, Szczecin, 19 — 20.09.1996, s. 287 — 293.
  • 299. ZAPAŁOWICZ Z., TRELA M.: Effect of environment parameters on wetting of steel and glass surfaces by water droplet. In: Proceedings of the Heat Transfer and Renewable Energy Sources, Międzyzdroje 2004, s. 661 — 670.
  • 300. ZAPAŁOWICZ Z., TRELA M.: Influence of environment parameters on the copper surface wetting by droplets. In: XIV International Conference on Application of Experimental and Numerical Methods in Liquid Mechanics, Rajecke Teplice, April 28 — 30, 2004 Slovensko, s. 121 — 126.
  • 301. ZAPAŁOWICZ Z., TRELA M.: Influence of environment parameters on the surface wetting by droplets. In: Proceedings of the 3rd International Symposium on Two-Phase Flow Modelling and Experimentation, Pisa Italy, September 22 — 24, 2004, Vol. 3, s. 1821 — 1828.
  • 302. ZAPAŁOWICZ Z., TRELA M.: Wpływ parametrów powietrza na rozlewanie się kropel wody po płaskiej powierzchni. W: XII Sympozjum Wymiany Ciepła i Masy, Kraków, 15 — 18 czerwca 2004, AGH — Kraków 2004, t. II, s. 905 — 919.
  • 303. ZAPAŁOWICZ Z., TRELA M.: Wpływ parametrów powietrza wilgotnego na proces zwilżania powierzchni ciała stałego przez kroplę wody. W: Konferencja Naukowa — Mechanika 2005, Gdańsk 2005, s. 245 — 251.
  • 304. ZAPAŁOWICZ Z., TRELA M.: Wpływ warunków otoczenia na zwilżanie powierzchni ścianki przez krople cieczy. Sprawozdanie końcowe z projektu badawczego nr 4T10B04422. Politechnika Szczecińska, Szczecin 2005, maszynopis.
  • 305. ZHANG N., CHAO D. F.: Experimental measurements of spreading of volatile liquid droplets. In: Proceedings of the Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics, Thessaloniki 2001, s. 1403 — 1408.
  • 306. ZHANG J., MELTON L. A.: Potential systematic errors in droplet temperature obtained by fluorescence methods. Transactions of the ASME, Journal of Heat Transfer, 1993, Vol. 115, s. 325 —331.
  • 307. ZHANG N., YANG WEN-JEI: Evaporation and explosion of liquid drops on the heated surface. Experiments in Fluids, 1983, No. 1, s. 101 — 111.
  • 308. ZHANG N., YANG WEN-JEI: Evaporative convection in minute drops on a plate with temperature gradient. International Journal of Heat and Mass Transfer, 1983, Vol. 26, No. 10, s. 1479—1488.
  • 309. ZHANG N., YANG WEN-JEI: Interfacial flow and evaporation of sessile drops on a vertical surface. Transactions of the ASME, Journal of Heat Transfer, 1984, Vol. 106, No. 3, s. 652 — 656.
  • 310. ZHANG N., YANG WEN-JEI: Microstructure of flow inside minute drops evaporating on a surface. Transactions of the ASME, Journal of Heat Transfer, 1983, Vol. 105, No. 4, s. 908 — 910.
  • 311. ZHANG N., YANG WEN-JEI: Natural convection in evaporating minute drops. Transactions of the ASME, Journal of Heat Transfer, 1982, Vol. 104, No. 4, s. 656 — 662.
  • 312. ZHANG N., YANG WEN-JEI: Visualization of evaporative convection in minute drops by laser shadowgraphy. The Review of Scientific Instruments, 1983, Vol. 54, No. 1, s. 93 — 96.
  • 313. ZHANG N., WANG B. X., XU Y.: Thermal instability of evaporating drops on a flat plate is effects on evaporation rate. International Journal of Heat and Mass Transfer, 1987, Vol. 30, No. 3, s. 469 —478.
  • 314. ZHANG S., GOGOS G.: Film evaporation of spherical droplet over a hot surface: fluid mechanics and heat/mass transfer analysis. Journal of Fluid Mechanics, 1991, Vol. 222, s. 543 — 563.
  • 315. ZHAO Z., POULIKAKOS D., FUKAI J.: Heat transfer and fluid dynamics during the collision of a liquid droplet on a substrate — I. Modeling. International Journal of Heat and Mass Transfer, 1996, Vol. 39, No. 13, 2771 — 2789.
  • 316. ZHAO Z., POULIKAKOS D., FUKAI J.: Heat transfer and fluid dynamics during the collision of a liquid droplet on a substrate — II. Experiments. International Journal of Heat and Mass Transfer, 1996, Vol. 39, No. 13, 2791 — 2802.
  • 317. ZHENG L., WANG Y-X, PLAWSKY J. L., WAYNER JR P. C.: Effect of curvature contact angle, and interfacial subcooling on contact line spreading in a microdrop in dropwise condensation. Langmuir, 2002, Vol. 18, No. 13, s. 5170 — 5177.
  • 318. ZHOU Q., YAO S. C.: Group modelling of impacting spray dynamics. International Journal of Heat and Mass Transfer, 1992, Vol. 35, No. 1, s. 121 — 129.
  • 319. ŻYSZKOWSKI W.: On the transplosion phenomenon and the Leidenfrost temperature for the molten cooper-water thermal interaction. International Journal of Heat and Mass Transfer, 1976, Vol. 19, No. 6, s. 625 — 633.
  • 320. ŻYSZKOWSKI W.: Thermal interaction of molten copper with water. International Journal of Heat and Mass Transfer, 1975, Vol. 18, No. 2, s. 271 — 287.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0044-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.