Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Analiza strat w żelazie przy użyciu modelu Jilesa-Athertona wbudowanego w model polowy
Języki publikacji
Abstrakty
The paper deals with the calculation of hysteresis power loss in cores of electromechanical converters. The analysis was carried out using the Jiles-Atherton model of ferromagnetic hysteresis incorporated into two-dimensional time-stepping finite element model. A vector hysteresis model was constructed by the vectorisation of a scalar model. The total power loss due to hysteresis was split into two component, one originating from the purely alternating magnetic field, and the second being a consequence of the local predomination of vector nature of magnetic field distribution. Two computational examples are presented showing the general applicability of the algorithm for determination of power loss distribution.
W pracy przedstawiono wyniki obliczeń strat mocy z histerezy w rdzeniach przetworników elektromagnetycznych. W analizie zastosowano dwuwymiarowy model obwodowo-polowy skonstruowany na bazie metody elementów skończonych oraz model histerezy. Wektorowy model histerezy magnetycznej skonstruowano metodą wektoryzacji modelu skalarnego Jilesa-Athertona. Dokonano rozdzielenia całkowitych straty mocy z histerezy na straty będące wynikiem składowej przemiennej rozkładu przestrzennego pola magnetycznego oraz straty wynikające z obrotu wektora indukcji magnetycznej w lokalnym układzie współrzędnych. Przedstawiono dwa przykłady obliczeniowe ilustrujące możliwości zastosowania opracowanego algorytmu.
Czasopismo
Rocznik
Tom
Strony
57--69
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
- Institute of Electromechanical Systems and Industrial Electronics, Faculty of Electrical Engineering, Automatic Control and Computer Science, Opole University of Technology, mjagiela@po.opole.pl
Bibliografia
- 1. Saitz J.: Magnetic Field Analysis of Electric Machines taking Ferromagnetic Hysteresis into Account. Acta Polytechnica Scandinavica, Elect. Eng. Series, No. 107, Espoo 2001.
- 2. Enokizono M., Soda N.: Direct Magnetic Loss Analysis by FEM considering Vector Magnetic Properties. IEEE Trans. Magn., Vol. MAG-34, No. 5, 1999, pp. 3008-3011.
- 3. Gyselinck J. et al.: Calculation of no-load induction core losses using the rate-dependent Preisach model. IEEE Trans. Magn. Vol. 34, 1998, pp. 3876-3881.
- 4. O’Kelly D.: Flux Penetration in A Ferromagnetic Material Including Hysteresis and Eddy-Current Effects. Journal of Physics D, Vol. 5, 1972, pp. 203-213.
- 5. Bertotti G. et al.: Core Loss Prediction Combining Physical Models with Numerical Field Analysis. Journal of Magnetism and Magnetic Materials, Vol. 133, 1994, pp. 647-650.
- 6. Stranges N., Findly R.D.: Methods for Predicting Rotational Iron Losses in Three Phase Induction Motor Stators. IEEE Trans. Magn., Vol. 36, 2000, pp. 3112-3114.
- 7. Lee J.-J. et al.: Loss Distribution of Three-Phase Induction Motor Fed by Pulsewidth-Modulated Inverter IEEE Trans. Magn., Vol. 40, No. 2, 2004, pp. 762-765.
- 8. Domeki H. et al.: Investigation of Benchmark Model for Estimating Iron Loss in Rotating Machine. IEEE Trans. Magn. Vol. 40, No. 2, 2004, pp. 794-797.
- 9. Atallah K., Howe D.: Calculation of The Rotational Power Loss in Electrical Steel Laminations from Measured H and B. IEEE Trans. Magn., Vol. 29, No. 6, 1993, pp. 3547-3549.
- 10. Saitz J.: Newton-Raphson Method and Fixed Point Technique in Finite Element Computation of Magnetic Field Problems in Media with Hysteresis. IEEE Trans. Magn.,Vol. 35, No. 3, 1999, pp. 1398-1401.
- 11. Dupre L., Gyselinck J., Melkebeek J.: Complementary Finite Element Methods in 2D Magnetics Taking into Account a Vector Preisach Model IEEE Trans. Magn., Vol. 34, No. 5, 1998, pp. 3048-3051.
- 12. Yuan J., Numerical Simulation of Hysteresis Effects in Ferromagnetic Material with the Finite Integration Technique. Cuvillier Verlag, Goettingen 2005.
- 13. Mayergoyz I.D.: Mathematical Models of Hysteresis. Springer, New York, 1991.
- 14. Fuzi J.: Two Preisach type vector hysteresis models. Physica B, No. 343, 2004, pp. 159-163.
- 15. Jiles D.C., Atherton D.L.: Theory of Ferromagnetic Hysteresis. Journal of Applied Physics and Magnetic Materials, Vol. 55, No. 6, March. 1984, pp. 2115-2120.
- 16. Lederer D. et al.: On the Parameter Identification of the Jiles-Atherton Hysteresis Model for Numerical Modeling of Measured Characteristics. IEEE Trans. Magn. , Vol 35, No. 3, May. 1999, pp. 1211-1214.
- 17. Leite J.V. et al.: Real-Coded Genetic Algorithm for Jiles-Atherton Model Parameters Identification. IEEE Trans. Magn. Vol. 40, No. 2, 2004, pp. 888-891.
- 18. Chiampi M., Chiarabaglio D., Repetto M.: A Jiles-Atherton and Fixed-Point Combined Technique for Time Periodic Magnetic Field Problems with Hysteresis. IEEE Trans. Magn., Vol. 31, No. 6, 1995, pp. 4306-4311.
- 19. Berquist A.J.: A simple Vector Generalisation of the Jiles-Atherton Model of Hysteresis. IEEE Trans. Magn. Vol. 32, 1996, 4213-4215.
- 19. Team Problem 32 web page: http://www.polito.it/ricerca/cadema/team32/home.html
- 21. Jagieła M. et al.: Formation of Circuit Equations for Inclusion in Time-Stepping Finite element Analysis of Rotating Machines. Proc. of XXVII IC-SPETO, Ustron, Poland, May 2005, pp. 35-38.
- 22. Jagieła M., Lukaniszyn M., Bumby J.R.: Field and Circuit Models for Magnetic Field Analysis with Hysteresis. Proc. of XXVI IC-SPETO, Niedzica, Poland, May 2004, pp. 25-28
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0042-0035