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ABSTRACT Finite element methods for 3-D magnetic field
calculation in permanent magnet motors are discussed. An edge
element method using a magnetic vector potential and the nodal
element method using a scalar magnetic potential are considered.
For both formulations the methods of field source description are
presented. Aftention is paid to sources in the permanent magnet
regions. The methods have been successfully applied in the analysis
of motors with inhomogeneously magnetized permanent magnets.
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1. INTRODUCTION

The FE methods for the calculation of 3-D magnetic field are considered.
Two FE approaches are discussed: (a) a scalar potential formulation in the
nodal element space and (b) a vector potential formulation in the edge element
space. The FE equations are expressed using the notion of equivalent magnetic
and electric networks.

The description of the magnetic field that is based on the scalar potential and
nodal elements may be considered as an equivalent to the nodal analysis of the
permeance network (PN) [2]. The formulation involving edge elements and
vector potential is equivalent to loop analysis of reluctance network (RN) [1, 2].
Nodes of permeance network correspond to the nodes of elements. Nodes of
reluctance network are positioned in the centre of elements and centres of
faces. In both formulations the sources of the magnetic field can be defined by
the edge value of the current vector potential T [1,4] and the edge value of
magnetizing vector T,

The paper presents the methods of source description in the regions with
permanent magnets. It has been assumed that the vector H of magnetic field
intensity can be described as follows:

H=v,B-H, (1)

where v, is the reluctivity tensor for magnet region, H,, is the coercive force
(rigid magnetization) [3]. The vector H,, may be considered as the magnetizing
vector or electric vector potential T,, T,, = H,.. It has been assumed that (1)
applies to the local co-ordinate system and in element vector H,, has only one
component H,, in the direction that is defined in magnetizing process.

In order to find the coercive force H, it is advantage to approximate the
demagnetization curve of magnet by tangent segments — see Fig. 1. For each
segment the intensity H, and reluctivity v,, are constant, independent of flux
density. The values of H, and v,, can be found in iteration process. In the case
of rare-earth permanent magnets the demagnetization characteristic may be
assumed to be linear. Thus, the vector H,, and reluctivity v,, are independent of
flux density and are known in advance.



Representation of permanent magnets in the 3-D finite element description ... 163

V. =cigt;

T B,

Fig. 1. Demagnetization characteristic of permanent magnet

2. PERMANENT MAGNETS
IN THE EDGE ELEMENT SPACE

The nodal FE formulation using the scalar magnetic potential 2 has been
considered. The FE equations represent the nodal equation of permeance
network and can be written in the following matrix form:

kI’A k Q=-® (2)

worg™w

Here A, is the matrix of branch permeances associated with element edges
and Q is the vector of nodal values of Q2 [2]. The matrix k,, transforms the nodal
values of Q into the magnetic voltages across the edges. The source vector ®
is expressed as

®=Kk/A,® (3)

where O is the vector of the magnetomotive forces (mmfs) in the branches of the
equivalent PN [2]. In general, the vector ® represents the mmfs of conducting
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currents ®, (in region with winding) and the mmfs of magnetizing current @,
(in regions with permanent magnets). Thus

0=0,+0, (4)

The branch mmfs ®,, represent the edge values of magnetizing vector T,, and
can be considered as a loop magnetization currents i,, in loops around element
edges. These currents are calculated for a given distribution of magnetizing vector
T.. Because of discontinuity of vector T, in external surface of magnet the
calculations of branch mmfs should be performed for the disjoint set of elements. In
the calculations the following relationships are taken into consideration

and

Here, ®,, is the vector of branch mmfs and A, is the matrix of branch
permeances for the disjoint set of elements, the matrix k. relates the edge
values of the disjoint set of elements to the edge values of the conjoint set of
elements. In (6) product A.:®,. represents the vector of flux sources ¢, for
disjoint set of elements.

In order to explain the method a simple example of permeance magnet
model is presented. A part of the permeance network in the magnet region has
been considered. The part includes six loops related to the element facets - see
Fig. 2...6.

It has been assumed that vector T,, has only component in the direction of
axis x (Fig. 2). In the permance model branch mmfs are equal to magnetization
currents in the loops around edges and represent the edge value of T,. Thus
the mmf ©,, in branch N;; of nodes P.P; is

0]

P

J
O,ux, = lomn,, = g T, dl (7)

In the presented example the vector T,, is parallel to the axis x. Therefore
the loop currents in loops around edges parallel to the axis x are only different
from zero. Thus the mmfs occur only in the branches associated with the edges
parallel to the axis x, see Fig. 3.
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The permanent magnet is homogenous magnetized. Therefore, the branch
mmfs are identical,

®, =T (8)

m mx

where Ax and T,,, are the symbols shown in Fig. 2.
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Fig. 2. Part of the network in the magnet region ( ky1, kp» are the edges on the boundary of
permanent magnet )
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Fig. 3. Loops of permeance network related to facets of disjoin set of elements in Fig. 2

In the nodal analysis of permeance network the branch mmfs are replace by
flux sources. As a result we obtain the system in Fig. 4.
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Fig. 4. Loops of permeance network in Fig. 3 with flux sources that replace branch mmfs
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In the model with regular elements all flux sources are identical and

Ve
(ax)?

Ve
Ax

d)zl:d)zZ:"':d)zS:%M G)m:%u me (9)

where ¥, is the element volume.

The sources ¢.; of the disjoint set of elements create the vector ¢,,. This
vector has been described as follows

Gma =Agd®md (10)

The flux sources of the conjoint parallel branches associated with the
common edges of elements (see Fig. 5) are defined as follows

O =K O (11)

In the obtained model the flux sources related to boundary edges k,;, &,

are half as big as flux sources associated with edges in magnet interior. In the
nodal equations the flux sources are represented by nodal flux injections ®,,
see Fig. 6. The vector nodal flux injections is

@, =Kkib,, (12)

Using this formula and (10), (11) we obtain the following description of flux
injections

(Dm :kv{keTAgd@md (13)

In the presented method of magnet representation the sum of flux injections
is equal to zero. For example in Fig. 6, the sum of fluxes ®,,; is equal to zero
because ®,, 5, 1=-®,,; for j=12,...,5. This is the most important property of
the proposed method of field source computation. Thanks to this property the
FE method using single scalar potential can be successfully applied for the
analysis of magnetic field in the region with permanent magnet.
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Fig. 5. The system of the conjoint branches associated with the common edges of
elements
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Fig. 6. Permeance network model of the conjoin set of elements with nodal flux injections

3. DESCRIPTION OF PERMANENT MAGNETS
IN THE FACET ELEMENT SPACE

The edge element method using the vector magnetic potential A is
considered. The edge element equations represent the loop equation of
reluctance network (RN) [1, 2]. The branches of RN connect the centres of the
elements. The vector of edge values of A represents the loop fluxes ¢ in the
loops around edges. The equations that describe fluxes ¢ can be written as

Ky KigRygak K@ =6, (14)

Here R,,q is the matrix of branch reluctances for the disjoint set of elements,
matrix k; transforms the edge values of A into the facet values of flux density B,
matrix ky; relates the facet values of the disjoint set of elements to the facet
values of the conjoint set of elements, 6, is the vector field sources in the facet
element space. The component of vector 6, represents loop mmfs in the RN that
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models the permanent magnet region. These mmfs are calculated for a given
distribution of magnetizing current density J,.. The magnetizing current density
Jn is expressed by curl T,,. The edge values of magnetizing vector T,, represent
the loop magnetization currents i,, in loops around edges. Therefore in the
calculation of 6, we can apply the currents i,, and mmfs ®,,, that are defined in
Section 2. This approach gives

eom = ksTksz;lNed®md (15)

Here matrix N, transforms the loop currents i, in the loops around edges
into the currents i, in the loops associated with element facets [2]. The
currents i, represent the branch mmfs 0,,, in the branches of reluctance
network. Thus

egmd = iosd =Ney® g (16)

In order to explain the method a simple example of magnet model has been
considered. The permanent magnet has been divided into four curved
rectangular parallelepipeds (Fig. 7). It has been assumed that magnet is
homogeneous magnetizing in direction of r-axis in a cylindrical coordinate
system r, z, vy, i.e. T,,= 1, T,. The edge values of magnetizing vector T,, i.e.
loop magnetization currents are non-zero only for the edges parallel to the
r-axis. Fig. 7 shows the loop magnetizing currents which flows around edges
and the currents i,,; defined by (16). The currents i,y are equal to the branch
mmfs in RN. Fig. 8 shows the reluctance model of permanent magnet with
branch mmfs. If magnet is homogenous magnetizing then the sum of branch
mmfs in the loop of RN inside the magnet are equal to zero. Only in the loops
around the edges F; lying in the flank of magnet the loop mmfs are nonzero.
Thus, the homogenous magnetizing magnet can be represented by infinite thin
coil that sticks to the magnet flank, see Fig. 9.

Usually, in the 3D edge element models the coils with current are described
by the facet values of current density, i,;, and loop mmfs in RN are defined as
follows

eom = Nerksdisd (17)

However, in the case of infinite thin coil that models permanent magnet
sources this description should not be applied
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Fig. 8. The reluctance model of permanent magnet with branch mmfs calculated using
loop currents in Fig. 7

h+0  i=ArH,=ArT,,
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Fig. 9. The equivalent model of homogeneous permanent magnet and his cross section




170 A. Demenko, D. Stachowiak

The presented above method has been used in the calculations of
permanent magnet motor (PMM). The 3D model has been applied. Motors with
radial and inhomogeneously magnetized magnets are analyzed [5]. Permanent
magnets are composed of segments (sectors). In the case of inhomogeneous
magnets the magnetising vector T,, has different direction that dependents on
the position of segment (z-component of T, is equal to zero) — see Fig. 10. The
components T,,, T,,, of vector T,, are sinusoidal function of angle 3 that describes
the segment position. Systems with different angle A that defines the direction of
T, in the terminal segment have been analysed (Fig. 10 b).

terminal
segments

Fig. 10. Permanent magnets divided into segments of different magnetization (a) and
terminal segment of magnet (b)

In the paper the results of cogging torque calculation are given. The
calculations have been performed for different values of the angle A. For A = 0°
we obtain magnets with radial magnetization. The calculated torque- angle
characteristics are shown in Fig. 11. It is interesting to see that the application of
inhomogeneously magnetized magnets can lead to the significant reduction of
cogging torque.
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Fig. 11. Calculated cogging torque-angle characteristic for PMM with radial (M1) and
inhomogeneously magnetized (M2) permanent magnets

4. CONCLUSION

The presented methods of permanent magnet description are based on the
calculation of edge values of magnetizing vector T,,. The methods are universal
and can be successfully applied in the FE analysis of permanent magnet
machines using nodal and edge elements. The methods enable the analysis of
system with inhomogeneously magnetized permanent magnets.

The proposed formulations give the field sources that exactly satisfy the
current continuity condition for the FE models. Therefore the methods provide a
high accuracy of FE method using single scalar potential for nodal elements and
guarantee a good convergence of iterative procedure of solving edge element
equations for ungaged formulation.
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ODWZOROWANIE MAGNESOW TRWALYCH
W DYSKRETNYCH TROJWYMIAROWYCH MODELACH
MASZYN ELEKTRYCZNYCH

A. DEMENKO, D. STACHOWIAK

STRESZCZENIE W pracy przedstawiono metody formufto-
wania wektora wymuszen dla obszaréow z magnesami trwatymi. Roz-
patrzono dwie metody opisu pola magnetycznego: metode potencjatu
Skalarnego oraz potencjatu wektorowego. Do rozwigzywania rownan
pola zastosowano metode elementéw skonczonych (MES). Roz-
patrzono nowe ujecie MES, w ktérym wielko$ci wektorowe opisuje sie
za pomocg funkcji interpolacyjnych elementéw krawedziowych i fun-
kcji interpolacyjnych elementéw Sciankowych.

W metodzie skalarnego potencjatu magnetycznego wykorzystuje
sie funkcje interpolacyjne elementu krawedziowego i wielkoSci kra-
wedziowe. WielkoSciami krawedziowymi sg nhapiecia magnetyczne.
Poszukiwane wartosci krawedziowe wyraza sie za pomocg wartoSci
weztowych potencjatu skalarnego i rozwigzuje sie rownania opisujgce
wartosci weztowe.

W metodzie potencjatu wektorowego wykorzystuje sie funkcje
interpolacyjne elementu $ciankowego i wielko$ci Sciankowe. Wielkos-
ciami Sciankowymi sg strumienie przenikajgce przez Scianki ele-
mentow. Postuzywszy sie jezykiem teorii obwodow strumienie prze-
nikajgce przez $cianki mozna nazwacC strumieniami gateziowymi.
W algorytmach obliczeniowych strumienie gateziowe wyraza sie za
pomocqg strumieni oczkowych. Reprezentantami tych strumieni sg
wielkoSci krawedziowe wektorowego potencjatu magnetycznego A
lj. zorientowane catki liniowe z A wzdtuz krawedzi elementow.

W pracy przedstawiono metody opisu Zrodet od pragdéow mag-
netyzacji w przestrzeni elementow krawedziowych i Sciankowych.
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Przyjeto, ze w obrebie magnesu wektor H natezenia pola opisany jest
wyrazeniem:

H=v,B-H,

przy czym v, jest tensorem reluktywnoSci ,wewnetrznej” magnesu,

a H, zastepczym natezeniem powsciggajgcym reprezentowanym
przez wektor namagnesowania T,, T, = H,. Przy zapisywaniu po-
wyzszej relacji przyjeto, ze dotyczy ona lokalnego uktadu wspotrzed-
nych, w ktorym wektor Hp,, ma tylko jedng sktadowg w kierunku na-
magnesowania.

W obszarze z magnesami trwatymi ZzZrodtami pola sg prady
magnetyzacji o gestosci J,.. Przy opisie Zrodet w przestrzeni elementow
krawedziowych i Sciankowych postugiwano sie krawedziowymi warto$-
ciami wektora magnesowania T,, uwzgledniano, ze J,=rotT,.
Krawedziowe wartosci wektora T, odpowiadajg oczkowym pradom
magnetyzacji i,,, w oczkach wokot krawedzi elementéw. Na podstawie
tych pradow mozna wyznaczy¢ iniekcje strumieni zrodfowych w me-
todzie potencjatu skalarnego oraz wymuszenia reprezentujgce
oczkowe sity magnetomotoryczne w metodzie potencjatu wektorowego.
Przedstawiono przyktad zastosowania opracowanych metod. Analizo-
wano moment zaczepowy W maszynie 0 magnesach ztozonych
z segmentow niejednorodnie namagnesowanych.



