PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Odporna regulacja predykcyjna obiektów nieliniowych

Autorzy
Identyfikatory
Warianty tytułu
EN
Robust predictive control of nonlinear processes
Języki publikacji
PL
Abstrakty
PL
Niniejsza praca, będąc wynikiem wieloletnich badań autora, zarówno teoretycznych, jak wdrożeniowych w przemyśle, stanowi próbę kompleksowego przedstawienia problematyki nieliniowej regulacji predykcyjnej oraz proponuje na tym tle łatwe do implementacji, dość uniwersalne i -jak się wydaje - skuteczne rozwiązanie suboptymalnej regulacji odpornej. Składa się z pięciu części tematycznych. W części pierwszej omówiono zasadę regulacji predykcyjnej, przedstawiono syntezę uogólnionego liniowego algorytmu predykcyjnego, a także wyjaśniono podstawowe właściwości układów regulacji predykcyjnej. Następnie sformułowano ogólne zadanie nieliniowej regulacji predykcyjnej oraz wskazano na istotne trudności jego rozwiązania, zwłaszcza w przypadku obiektów o niedokładnie znanych lub zmiennych w czasie właściwościach. W końcu przedstawiono najbardziej znane sposoby suboptymalnej regulacji NMPC, łącznie z metodami inteligencji obliczeniowej oraz scharakteryzowano najpopularniejsze i najchętniej stosowane w takiej regulacji postaci opisu obiektów nieliniowych, w tym modele rozmyte i neuronowe oraz bardzo popularne w praktyce tzw. modele blokowo-zorientowane. W części drugiej zaproponowano oryginalny sposób nieliniowej suboptymalnej regulacji predykcyjnej NL CRHPC z blokowo-zorientowanym modelem Hammersteina. Opisano dokładnie sposób syntezy algorytmu oraz jego rozwinięcie na przypadek wielowymiarowy, a także jego wersję uproszczoną, ułatwiającą implementację w systemach mikroprocesorowych o szczególnie małej mocy obliczeniowej. Następnie zaproponowano syntezę wielowymiarowego algorytmu z modelem Hammersteina w dziedzinie zmiennych stanu NL MPCS. Dla obu algorytmów podano sposób uwzględnienia ograniczeń sygnału sterującego. W części trzeciej zaproponowano włączenie opracowanych i opisanych wcześniej suboptymalnych, nieliniowych regulatorów predykcyjnych z modelem Hammersteina w strukturę regulacji ze śledzeniem modelu MFC, charakteryzującą się zwiększoną odpornością w stosunku do klasycznych układów jednopętlowych. Opisano zasadę doboru regulatora pomocniczego układu NMPC-MFC dla obiektów SISO oraz sposób suboptymalnego ograniczenia sygnału sterującego. W części czwartej przedstawiono wersję odpornego, nieliniowego układu regulacji NMPC-MFC dla obiektów o wielu wejściach i wielu wyjściach. Dokonano syntezy regulatorów składowych proponowanej struktury układu regulacji przy założeniu, że obiekt podlegać może nieznanym, ale ograniczonym perturbacjom oraz że działać na niego mogą zależne w znany sposób od wektora stanu, ale niekoniecznie ograniczone zakłócenia. W końcowej części pracy całość rozważań teoretycznych zilustrowano wynikami przykładowych badań symulacyjnych proponowanych algorytmów. Pokazano również wyniki regulacji rzeczywistego obiektu elektotermicznego rozproszonym systemem PAC, w którym zaimplementowano opracowany algorytm odpornego sterowania predykcyjnego.
EN
In the monograph an approach to synthesis of a predictive controller for nonlinear processes that are sufficiently adequately described by a Hammerstein model is presented. To extend the range of applicability of the control algorithm to nonlinear processes the properties of which depart from those defined by the adopted model, it has been proposed to incorporate the algorithm into the Model Following Control (MFC) structure characterized by high robustness. In the first part of the monograph the principle of predictive control is discussed, and synthesis of a generalized linear predictive control algorithm is presented. Also, basic system properties and ways to provide stability for predictive control systems are established. Further, the nonlinear predictive control and the ways of its implementation are described. The second part deals with nonlinear predictive control that employs a Hammerstein model. The structure and properties of the model are discussed. Also, synthesis of the control algorithm is described, and its extension to multivariable control is given. A modification of the proposed algorithm that enables its implementation in microcomputer systems of low computing power is presented. Next, synthesis of the multivariable algorithm with the Hammerstein model in state space is given. The synthesis method is based on representing nonlinear time-invariant processes by their linear time-variant models. The third part is devoted to increasing the robustness exhibited by the control system with the proposed predictive algorithms to an inevitable mismatch between the process model adopted for controller synthesis and the actual process. The increase in robustness has been achieved by incorporating the developed predictive algorithms into the MFC structure. After presenting general characteristics featured by MFC, a description of the proposed predictive NMPC-MFC controller with the Hammerstein model for SISO or multivariable diagonally dominated processes is given. In the fourth part of the monograph a robust predictive NMPC-MFC controller for MIMO processes is presented. The controllers making up the MFC structure have been synthesized under assumption that the process to be controlled may be subjected to unknown yet bounded perturbations, or may be affected by disturbances not necessarily bounded yet dependent on the state vector in a known way. The applicability of the theoretical study is illustrated by results of simulation tests. Additionally, results of tests are given where a real electrothermal plant is governed by a distributed Programmable Automation Controller (PAC) system in which the proposed predictive control algorithm has been implemented. It has been shown that the proposed solutions are easy to implement, and provide relatively high robustness and control performance. Another virtue is that the proposed solutions retain advantages inherent in linear predictive algorithms, such as simple physical interpretation and the ease of identification of the adopted process model. Also, the nonlinear algorithm parameters to be tuned may be chosen by means of methods recommended for corresponding linear algorithms. The operation principle of the proposed MFC structure is relatively intelligible, and the structure itself may be implemented without any difficulties and without any powerful computing means. Moreover, due to its universality the proposed NMPC-MFC structure may be utilized in robust controllers based on predictive algorithms other than those proposed in the monograph in order to control nonlinear processes or those with time-variant parameters.
Rocznik
Strony
1--205
Opis fizyczny
Bibliogr. 310 poz., rys., tab.
Twórcy
autor
Bibliografia
  • [1] Ackermann J.: Robust control. Berlin, Springer-Verlag 1993.
  • [2] Alamo T., Muoz de la Pea D., Limon D., Camacho E. F.: Constrained min-max predictive control: a polynomial-time approach. In: Proc. 42nd IEEE Conf. on Decision and Control. Hawaii 2003, s. 912-916.
  • [3] Albertos P., Ortega R.: On generalized predictive control: two alternative formulations. Automatica, 1989, Vol. 25(5), s. 735 - 755.
  • [4] Al-Duwaish H., Nazmul Karim M., Chandrasekar V.: Hammerstein model identification by multilayer feedforward neural networks. Int. J. Syst. Sci., 1997, Vol. 28(1), s. 49 - 54.
  • [5] Allgöwer F., Badgwell T. A., Qin J. S., Rawlings J. B., Wright S. J.: Nonlinear predictive control and moving horizon estimation — an introductory overview. In: Advances in control. Highlights of ECC'99, ed. P. M. Frank. London, Springer-Verlag 1999, s. 391 - 449.
  • [6] Ansari R. M., Tade M. O.: Nonlinear model-based process control. Applications in petroleum refining. London, Springer-Verlag 2000.
  • [7] Aström K. J., Hägglund T.: The future of PID control. Contr. Eng. Practice, 2001, Vol. 9, s. 1163 - 1175.
  • [8] Babuška R., Sousa J. M., Verbrungen H. B.: Predictive control on nonlinear systems based on fuzzy and neural models. In: Proc. 5th European Control Conf. Karlsruhe 1999, CD-ROM.
  • [9] Babuška R., Verbrungen H. B.: An overwiew of fuzzy modelling for control. Control Eng. Practice, 1996, Vol. 4(11), s. 1593 - 1606.
  • [10] Babuška R., Verbrungen H. B.: Neuro-fuzzy methods for nonlinear system identification. Annual Reviews in Control, 2003, Vol. 27, s. 73 - 85.
  • [11] Badgwell T. A., Qin S. J.: Review of nonlinear model predictive control applications. In: Nonlinear predictive control — theory and practice, eds. B. Kouvaritakis, M. Cannon, Control Eng. Series 61. London, IEE 2001, s. 3 - 32.
  • [12] Bai E. W.: Identification of linear systems with hard input nonlinearities of known structure. Automatica, 2002, Vol. 38, s. 853 - 860.
  • [13] Bai E. W.: Decupling the linear and nonlinear parts in Hammerstein model identification. Automatica, 2004, Vol. 40, s. 671 - 676.
  • [14] Banerjee P., Shah S. L.: Tuning guidelines for robust generalized predictive control. In: Proc. 31st IEEE Conf on Decision and Control. Tuscon 1992, s. 3233 - 3234.
  • [15] Bars R., Colaneri P., de Souza C. E., Allgöwer F., Kleimenov A., Scherer C.: Theory, algorithms and technology in the design of control systems. In: Proc. 16th IFAC World Congress. Prague 2005, CD-ROM.
  • [16] Bars R., Haber R.: One-step ahead predictive control algorithms for nonlinear nonparametric models. In: Proc. 2nd European Control Conf. Groningen 1993, s. 941 - 945.
  • [17] Bazaraa M. S., Sherali J., Shetty K.: Nonlinear programming: theory and algorithms. New York, John Wiley 1993.
  • [18] Belforte G., Gay P.: Optimal input design for set-membership identification of Hammerstein models. Int. J. Control, 2003, Vol. 76(3), s. 217 - 225.
  • [19] Bellman R.: Dynamic programming. Princeton, University Press 1957.
  • [20] Bemporad A.: A predictive controller with artificial Lyapunov function for linear systems with input/state constraints. Automatica, 1998, Vol. 34(10), s. 1255 - 1260.
  • [21] Bemporad A.: Reference governor for constrained nonlinear systems. IEEE Trans. Automat. Contr., 1998, Vol. 43(3), s. 415 - 419.
  • [22] Bemporad A., Chisci L., Mosca E.: On the stabilizing property of SIORHC. Automatica, 1995, Vol. 30, s. 2013 - 2015.
  • [23] Bemporad A., Morari M.: Control of systems integrating logic, dynamics, and constraints. Automatica, 1999, Vol. 35, s. 407 - 427.
  • [24] Bemporad A., Morari M., Dua V., Pistikopoulos E. N.: The explicit linear quadratic regulator for constrained systems. Automatica, 2002, Vol. 38(1), s. 3 - 20.
  • [25] Biegler L. T. Advances in nonlinear programming concepts for process control. J. Process Control, 1998, Vol. 8(5/6), s. 301 - 311.
  • [26] Bielińska E.: Identyfikowalność elementarnych modeli biliniowych. W: Mat. XV Krajowej Konferencji Automatyki, t. 1. Warszawa 2005, s. 337 - 342.
  • [27] Billings S. A., Fakhouri S. Y.: Identification of systems containing linear dynamic and static nonlinear elements. Automatica, 1982, Vol. 18(1), s. 15 - 26.
  • [28] Bitmead R. R., Gevers M., Wertz V.: Adaptive optimal control. The thinking man's GPC. Englewood Cliffs, Prentice Hall 1990.
  • [29] Blet N., Megias D., Serrano J., De Prada C.: Nonlinear MPC versus MPC using on-line linearisation — comparative study. In: Proc. 15th IFAC World Congress. Barcelona 2002, CD-ROM.
  • [30] Bloemen H. H. J., Van den Boom T. J. J., Verbrungen H. B.: Model-based predictive control for Hammerstein-Wiener systems. Int. J. Control, 2001, Vol. 74(5), s. 482 - 495.
  • [31] Błachuta M.: On fast state-space algorithms for predictive control. In: Proc. 5th Int. Symp. Methods and Models in Automation and Robotics. Międzyzdroje 1998, s. 455 - 460.
  • [32] Boutayeb M., Darouach M.: Recursive identification method for MISO Wiener-Hammerstein model. IEEE Trans. Automat. Contr., 1995, Vol. 40(2), s. 287 - 291.
  • [33] Boutayeb M., Rafaralahy H., Darouach M.: A robust and recursive identification method for Hammerstein model. In: Proc. IFAC World Congress. San Francisco 1996, s. 447 - 452.
  • [34] Broel-Plater B., Domek S.: Self-tuning and self-optimizing microprocessor-based controller. In: Proc. Symp. MECO'83. Atheny 1983.
  • [35] Broel-Plater B., Domek S.: Mikroprocesorowa realizacja predykcyjnych algorytmów sterowania obiektami przemysłowymi o zmiennym opóźnieniu. W: Mat. V Krajowej Konf. Nauk.-Techn. „Zastosowanie mikroprocesorów w automatyce i pomiarach", t. 1. Warszawa 1986, s. 146-153.
  • [36] Broel-Plater B., Domek S.: Predykcyjna regulacja procesu nakładania izolacji na przewód elektryczny. W: Mat. Konf. „Technika komputerowa w przedsiębiorstwie". Bielsko-Biała 1986, s. 65 - 72.
  • [37] Broel-Plater B., Domek S.: Predykcyjny regulator mikroprocesorowy dla obiektów o zmiennym opóźnieniu. W: Mat. Konf. „Metody komputerowe w automatyce i elektrotechnice ", t. 3. Częstochowa 1986, s. 7 - 14.
  • [38] Brzózka J.: Regulatory i układy automatyki. Warszawa, Wydawnictwo MIKOM 2004.
  • [39] Burgat C., Tarbouriech S.: Stability and control of saturated linear systems. In: Nonlinear systems. Vol. 2 — Stability and stabilization, eds. A. J. Fossard, D. Normand-Cyrot. London, Chapman&Hall 1996,113 -197.
  • [40] Camacho E. F.: Constrained generalized predictive control. IEEE Trans. Automat. Contr., 1993, Vol. 38(2), s. 327 - 332.
  • [41] Camacho E. F., Berenguel M., Bordons C.: Adaptive generalized predictive control of a distributed collector field. IEEE Trans, on Control Systems Technology, 1994, Vol. 2(4), s. 462 - 468.
  • [42] Camacho E. F., Berenguel M., Rubio E. R.: Application of a gain scheduling generalized predictive controller to a solar power plant. Contr. Eng. Practice,1994, Vol. 2(2), s. 227 - 238.
  • [43] Camacho E. F., Bordons C.: Model predictive control in the process industry. Advances in industrial control, Berlin, Springer-Verlag 1995.
  • [44] Camacho E. F., Bordons C.: Model predictive control. London, Springer-Verlag 1998.
  • [45] Camacho E. F., Bordons C.: Nonlinear model predictive control: an introductory survey. In: Prep. Int. Workshop on Assessment and Future Directions of Nonlinear Model Predictive Control. Freudenstadt-Lauterbad 2005, s. 15 - 30.
  • [46] Casavola A., Giannelli M., Mosca E.: Min-max predictive control strategies for input-saturated polytopic uncertain systems. Automatica, 2000, Vol. 36, s. 125 - 133.
  • [47] Chang F. H. I., Luus R.: A noniterative method for identification using Hammerstein model. IEEE Trans. Automat. Contr., 1971, Vol. 16(5), s. 464 - 468.
  • [48] Chen C. C, Shaw L.: On receding horizon feedback control. Automatica, 1982, Vol. 18, s. 349 - 352.
  • [49] Chen C. H., Fassois S. D.: Maximum likelihood identification of stochastic Wiener-Hammerstein type non-linear systems. Mechanical Systems and Signal Processing, 1992, Vol. 6(2), s. 135-153.
  • [50] Chen H., Allgöwer F.: A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability. Automatica, 1998, Vol. 34(10), s. 1205 - 1218.
  • [51] Chen J., Yea Y.: Neural network-based predictive control for multivariable processes. Chemical Eng. Communications, 2002, Vol. 189(7), s. 865 - 894.
  • [52] Chern T. L., Chang G. K.: Automatic voltage regulator design by modified discrete integral variable structure model following control. Automatica, 1998, Vol. 34, s. 1575 - 1582.
  • [53] Chisci L., Lombardi A., Mosca E.: Dual receding horizon control of constrained discrete-time systems. European J. Contr., 1996, Vol. 2, s. 278 - 285.
  • [54] Clarke D. W.: Application of generalized predictive control to industrial processes. IEEE Control Systems Magazine, 1988, Vol. 8(2), s. 49 - 55.
  • [55] Clarke D. W., Mohtadi C.: Properties of generalized predictive control. Automatica, 1989, Vol. 25(6), s. 859 - 875.
  • [56] Clarke D. W., Mohtadi C., Tuffs P.S.: Generalized predictive control — Part I: The basic algorithm. Automatica, 1987, Vol. 23(2), s. 137 - 148.
  • [57] Clarke D. W., Mohtadi C., Tuffs P. S.: Generalized predictive control — Part II: Extensions and interpretations. Automatica, 1987, Vol. 23(2), s. 149 - 160.
  • [58] Clarke D. W., Scattolini R.: Constrained receding horizon predictive control. Proceedings IEE, Part D, 1991, Vol. 138, s. 347 - 354.
  • [59] Cutler C. R., Ramaker B. L.: Dynamic matrix control — a computer control algorithm. In: Proc. Joint. Aut. Control Conf., WP5—B. San Francisco 1980.
  • [60] Declercq F., De Keyser R. M. C.: Suboptimal nonlinear predictive controllers. Int. J. Appl. Math. and Comp. Sci., 1999, Vol. 9(1), s. 129 - 148.
  • [61] De Keyser R. M. C.: Basic principles of model based predictive control. In: Proc. 1st European Control Conf. Grenoble 1991, s. 1753 - 1758.
  • [62] De Keyser R. M. C., Van Cuawenberghe A. R.: Extended prediction self-adaptive control. In: Proc. IFAC Symp. on Identification and System Parameter Estimation. York 1985, s. 1317-1322.
  • [63] De Keyser R. M. C., Van de Velde Ph. G. A., Dumortier F. G. A.: A comparative study of self-adaptive long-range predictive control methods. Automatica, 1988, Vol. 24(2), s. 149-163.
  • [64] De Nicolao G., Magni L., Scattolini R.: On the robustness of receding horizon control with terminal constraints. IEEE Trans. Automat. Contr., 1996, Vol. 41, s. 451 - 453.
  • [65] Dittmar R., Ogonowski Z., Damert K.: Predictive control of a nonlinear open-loop unstable polymerization reactor. Chem. Eng. Sci., 1991, Vol. 46, s. 2679 - 2689.
  • [66] Domek S.: Predictive control for a class of nonlinear systems. In: Proc. 2nd Int. Symp. Methods and Models in Automation and Robotics. Międzyzdroje 1995, s. 279 - 284.
  • [67] Domek S.: CRHPC control strategy for a class of nonlinear systems. In: Proc. 15th IASTED Int. Conf. Modelling, Identification and Control. Innsbruck 1996, s. 375 - 378.
  • [68] Domek S.: Algorytm predykcyjny dla obiektów o nieliniowej charakterystyce statycznej. W: Mat. 3 Konf. Nauk-Tech. Mechatronika'97. Warszawa 1997, s. 42 - 47.
  • [69] Domek S.: Indirect adaptive CRHPC algorithm for systems of the Hammerstein form. In: Proc. 17th IASTED Int. Conf. Modelling, Identification and Control. Grindelwald 1998, s. 322 - 324.
  • [70] Domek S.: Applying non-linear predictive algorithms to control of electroheating processes. In: Proc. 5th European Control Conf. Karlsruhe 1999, CD-ROM.
  • [71] Domek S.: Predykcyjny algorytm EHPC dla nieliniowych procesów wielowymiarowych. W: Mat. XIII Kraj. Konf. Automatyki, t. 1. Opole 1999, s. 125 - 128.
  • [72] Domek S.: Dwuobwodowy układ regulacji predykcyjnej obiektów nieliniowych. W: Mat. XIV Kraj. Konf. Automatyki, t. 1. Zielona Góra 2002, s. 135-140.
  • [73] Domek S.: Robust predictive model following control for uncertain nonlinear systems. In: Proc. 8th IEEE Int. Conf. Methods and Models in Automation and Robotics. Szczecin 2002, s. 787 - 792.
  • [74] Domek S.: Regulacja predykcyjna ze śledzeniem modelu manipulatora dwuczłonowego. W: Mat. XLII Symp. PTMTS "Modelowanie w mechanice". Wisła 2003, s. 51 - 52.
  • [75] Domek S.: Regulacja predykcyjna wybranej klasy obiektów nieliniowych z ograniczeniami wejść. W: Mat. XV Kraj. Konf. Automatyki, t. 1. Warszawa 2005, s. 275 - 278.
  • [76] Domek S., Marchelek K.: Wykorzystanie regulacji predykcyjnej w mechatronice. Zeszyty Naukowe Katedry Mechaniki Stosowanej Politechniki Śląskiej, 2005, nr 29, s. 63 - 68.
  • [77] Domek S., Tarasiejski L.: Robust predictive model following control. Przegląd Elektrotechniczny, 2003, Vol. 11, s. 847 - 850.
  • [78] Domek S., Tarasiejski L.: Nonlinear model predictive control method for control nonaffine systems. Systems Science, 2005, Vol. 31(3), s. 13 - 20.
  • [79] Dougherty D., Cooper D.: A practical model adaptive strategy for single-loop MPC. Contr. Eng. Practice, 2003, Vol. 11, s. 141 - 159.
  • [80] Doyle F. J., Ogunaike B. A., Pearson R. K.: Nonlinear model-based control using second- order Volterra models. Automatica, 1995, Vol. 31, s. 697 - 714.
  • [81] Dutka A. S., Ordys A. W.: The optimal non-linear generalised predictive control by the time-varying approximation. In: Proc. 10th IEEE Int. Conf. Methods and Models in Automation and Robotics. Międzyzdroje 2004, s. 299 - 304.
  • [82] Dzieliński A.: Modelowanie i sterowanie układów nieliniowych metodami neuropodobnymi. Warszawa, Oficyna Wydawnicza Politechniki Warszawskiej 2002.
  • [83] Eskinat E., Johnson S. H., Luyben W. L.: Use of Hammerstein models in identification of nonlinear systems. AIChE Journal, 1991, Vol. 37(2), s. 255 - 268.
  • [84] Figwer J.: Identyfikacja modeli Wienera z wykorzystaniem wielosinosuidalnych losowych sygnałów pobudzających. W: Mat. XV Krajowej Konferencji Automatyki, t. 1. Warszawa 2005, s. 343-348.
  • [85] Findeisen R., Allgöwer F.: An introduction to nonlinear model predictive control. In: Proc. 21st Benelux Meeting on System and Control. Veldhoven 2002, CD-ROM.
  • [86] Fruzzetti K. P., Palazoglu A., McDonald K. A.: Nonlinear model predictive control using Hammerstein models. J. Process Contr., 1997, Vol. 7, s. 31 - 41.
  • [87] Garcia C. E., Morshedi A. M. Quadratic programming solution of dynamic matrix control (QDMC). Chemical Engineering Communications, 1986, Vol. 46, s. 73 - 87.
  • [88] Garcia C. E., Prett D. M., Morari M.: Model predictive control: theory and practice — a survey. Automatica, 1989, Vol. 25(3), s. 335 - 348.
  • [89] Gawthrop P. J., Sbarbaro D., Jones R. W.: Model-based control structures. In: Proc. 2nd European Control Conf. Groningen 1993, s. 17 - 22.
  • [90] Gilbert E. G., Tan K. T.: Linear systems with state and control constraints: the theory and application of maximal output admissible sets. IEEE Trans. Automat. Contr., 1991, Vol. 36, s. 1008-1020.
  • [91] Golub G. H., Van Loan C. F.: Matrix computations. Baltimore, Johns Hopkins University Press 1989.
  • [92] Gomez J. C., Baeyens E.: Subspace identification of multivariable Hammerstein and Wiener models. In: Proc. 15th IFAC World Congress. Barcelona 2002, CD-ROM.
  • [93] Goodwin G., Sin K.: Adaptive filtering, prediction and control. Englewood Cliffs, Prentice Hall 1984.
  • [94] Greblicki W.: Nonparametric approach to Wiener system identification. IEEE Trans. Circuits Syst. I, 1997, Vol. 44(6), s. 538 - 545.
  • [95] Greblicki W., Pawlak M.: Identification of discrete Hammerstein systems using kernel regression estimates. IEEE Trans. Automat. Contr., 1986, Vol. 31(1), s. 74 - 77.
  • [96] Greblicki W., Pawlak M.: Cascade nonlinear system identification by a nonparametric method. Int. J. Syst. Sci., 1994, Vol. 25, s. 129 - 153.
  • [97] Green M., Limebeer D. J. N.: Linear robust control. Englewood Cliffs, Prentice Hall 1995.
  • [98] Grimble M. J.: Generalized predictive control: an introduction to the advantages and limitations. Int. J. Syst. Sci., 1992, Vol. 23(1), s. 85 - 98.
  • [99] Grimble M. J., Ordys A. W.: Nonlinear predictive control for manufacturing and robotic applications. In: Proc. 7th IEEE Conf. on Methods and Models in Automation and Robotics. Międzyzdroje 2001, s. 579 - 592.
  • [100] Grimble M. J., Ordys A. W.: Predictive control design systems with state dependent nonlinearities. In: Proc. SIAM Conf. on Control and Its Applications. San Diego 2001.
  • [101] Grimm G., Messina M. J., Tuna S. E., Teel A. R.: Examples when nonlinear model predictive control is nonrobust. Automatica. 2004, Vol. 40(10) s. 1729 - 1738.
  • [102] Haber R., Bars R., Lengyel O.: Sub-optimal nonlinear predictive and adaptive control based on the parametric Volterra model. Int. J. Appl. Math, and Comp. Sci., 1999, Vol. 9(1), s. 161-173.
  • [103] Haber R., Unbehauen H.: Structure identification of nonlinear dynamic systems — a survay on input/output approaches. Automatica, 1990, Vol. 26, s. 651 - 677.
  • [104] Hasiewicz Z., Mzyk G.: Kernel instrumental variables for Hammerstein system identificaton. In: Proc. 10th Int. Conf. Methods and Models in Automation and Robotics. Międzyzdroje 2004, s. 1099-1104.
  • [105] Henson M. A.: Nonlinear model predictive control: current status and future directions. Computers and Chemical Engineering, 1998, Vol. 23, s. 187 - 202.
  • [106] Ho W. K., Hang C. C., Cao L. S.: Tuning of PID controllers based on gain and phase margin specifications. Automatica, 1995, Vol. 31, s. 497 - 502.
  • [107] Hoekstra P., van den Boom T. J. J., Botto M. A.: Design of an analytic constrained predictive controller using neural networks. In: Proc. 6th European Control Conf. Porto 2001, CD-ROM.
  • [108] Horla D.: Optymalizacja wypukła w zastosowaniu do syntezy adaptacyjnego regulatora predykcyjnego z niejawnym układem anti-windup. W: Mat. XV Krajowej Konferencji Automatyki, t. 1. Warszawa 2005, s. 279 - 284.
  • [109] Huaguang Z., Cai L.: Multivariable fuzzy generalized predictive control. Cybernetics & Systems, 2002, Vol. 33(1), s. 66 - 99.
  • [110] Hunt K. J., Munih M., De Donaldson N. N., Barr F. M. D.: Investigation of the Hammerstein hypothesis in the modeling of electrically stimulated muscle. IEEE Trans. Biomedical Eng., 1998, Vol. 45(8), s. 998 - 1009.
  • [111] Hunter W., Kronenberg M. J.: The identification of nonlinear biological systems: Wiener and Hammerstein cascade models. Biolog. Cybern., 1986, Vol. 55, s. 135 - 144.
  • [112] Isermann R.: Digital control systems. Berlin, Springer-Verlag 1981.
  • [113] Janczak A.: Identification of Wiener models using recurrent neural networks. In: Proc. 4th Int. Conf. Methods and Models in Automation and Robotics. Międzyzdroje 1997, s. 727 - 732.
  • [114] Janczak A.: Identification of Wiener and Hammerstein systems with neural networks and polynomial models. Methods and applications. Zielona Góra, University of Zielona Góra Press 2003.
  • [115] Janczak A.: Identification of nonlinear sytems using neural networks and polynomial models. A block-oriented approach. Berlin, Springer-Verlag 2005.
  • [116] Kaczorek T.: Macierze w automatyce i elektrotechnice. Warszawa, WNT 1984.
  • [117] Kaczorek T.: Teoria sterowania i systemów. Warszawa, PWN 1993.
  • [118] Kalman R. E.: Contributions to the theory of optimal control. Boletin Sociedad Matematica Mexicana, 1960, Vol. 5, s. 102 - 119.
  • [119] Keerthi S. S., Gilbert E. G.: Optimal, infinite horizon feedback laws for a general class of constrained discrete time systems: Stability and moving-horizon approximations. J. Optim. Theory and Application, 1988, Vol. 57, s. 265 - 293.
  • [120] Kikstra J., Roffel F., Schoen B.: Model predictive control of a combined heat and power plant using local linear model. J. Eng. Gas Turbines and Power, 1998, Vol. 120(4), s. 689 - 693.
  • [121] Kleinman B. L.: An easy way to stabilize a linear constant system. IEEE Transactions on Automat. Contr., 1970, Vol. 15(12), s. 693 - 698.
  • [122] Korbicz J., Kościelny J. M., Kowalczuk Z., Cholewa W.: (red.) Diagnostyka procesów. Modele, metody sztucznej inteligencji, zastosowania. Seria: Monografie Komitetu Automatyki i Robotyki PAN. Warszawa, WNT 2002.
  • [123] Korbicz J., Obuchowicz A., Uciński D.: Sztuczne sieci neuronowe. Podstawy i zastosowania. Warszawa, Akademicka Oficyna Wydawnicza PLJ 1994.
  • [124] Kothare M. V., Balakrishnan V., Morari M.: Robust constrained model predictive control using linear matrix inequalities. Automatica, 1996, Vol. 32(10), s. 1361 - 1379.
  • [125] Kouvaritakis B., Cannon M., Rossiter J. A.: Non-linear model based predictive control. Int. J. Control, 1999, Vol. 72(10), s. 919 - 928.
  • [126] Kouvaritakis B., Cannon M. C., Rossiter J. A.: Efficient active set optimisation in triple modę MPC. IEEE Trans. Automat. Contr., 2001, Vol. 46(8), s. 1307 - 1313.
  • [127] Kouvaritakis B., Rossiter J. A., Chang A. O. T.: Stable generalized predictive control. An algorithm with guaranteed stability. Proceedings IEE, Part D, 1992, Vol. 139(4), s. 349 - 362.
  • [128] Kowalczuk Z., Suchomski P.: Anticipated filtering approach to generalized predictive control. In: Proc. 3rd European Control Conf. Rome 1995, s. 3591 - 3596.
  • [129] Kowalczuk Z., Suchomski P.: Simple stable discrete-time generalised predictive control with anticipated filtration of control error. Contr. Cybern., 2002, Vol. 31(1), s. 1 - 22.
  • [130] Kowalczuk Z., Suchomski P., Marcińczyk A.: Discrete-time and continuous-time generalized predictive control with anticipated filtration: tuning rules. Int. J. Appl. Math. Comp. Sci., 1996, Vol. 6(4), s. 707 - 732.
  • [131] Krämer K., Unbehauen H.: Predictive adaptive control. Comparison of main algorithms. In: Proc. 1st European Control Conf. Grenoble 1991, s. 327 - 332.
  • [132] Królikowski A.: Sterowanie adaptacyjne z ograniczeniami sygnału sterującego. Poznań, Wydawnictwo Politechniki Poznańskiej 2004.
  • [133] Królikowski A., Jerzy D.: Self-tuning generalized predictive control with input constraints. Int. J. Appl. Math. and Comp. Sci. 2001, Vol. 11(2), s. 459 - 479.
  • [134] Kurtz M. J., Henson M. A.: Input/output linearizing control of constrained nonlinear processes. J. Process Control, 1997, Vol. 7(1), s. 3 - 17.
  • [135] Kwaśniewski J.: Programowalne sterowniki przemysłowe w systemach sterowania. Kraków 1999.
  • [136] Kwon W. H., Bruckstein A. M., Kailath T.: Stabilizing state-feedback design via the moving horizon method. Int. J. Control, 1983, Vol. 37(3), s. 631 - 643.
  • [137] Kwon W. H., Pearson A. E.: A modified quadratic cost problem and feedback stabilization of a linear system. IEEE Trans. Automat. Contr., 1977, Vol. 22(5), s. 838 - 842.
  • [138] Kwon W. H., Pearson A. E.: On feedback stabilization of time-varying discrete linear systems. IEEE Trans, on Automat. Contr., 1978, Vol. 23, s. 479 - 481.
  • [139] Lane S., Stengel R.: Flight control design using non-linear inverse dynamics. Automatica, 1988, Vol. 24, s. 471-483.
  • [140] Latawiec K.: Contributions to advanced control and estimation for linear discrete-time MIMO systems. Opole, Oficyna Wydawnicza Politechniki Opolskiej 1998.
  • [141] Latawiec K., Domek S.: Robustness of EHMAC to poorly estimated or time-varying delay. In: Proc. 5th Int. Symp. on Methods and Models in Automation and Robotics. Międzyzdroje 1998, s. 483 - 488.
  • [142] Lazar M., Pastravanu O.: A neural predictive controller for non-linear systems. Mathematics and Computers in Simulation, 2002, Vol. 60, s. 315 - 324.
  • [143] Lee E. B., Markus L.: Foundations of optimal control theory. New York, John Wiley 1967.
  • [144] Lee J. H., Cooley B.: Recent advances in model predictive control and other related areas. In: Proc. 5th Int. Conf. Chemical Process Control. CACHE, AIChE 1997, s. 201 - 216.
  • [145] Lee J. H., Morari M., Garda C. E.: State space interpretation of model predictive control. Automatica, 1994, Vol. 30(4), s. 707 - 717.
  • [146] Lee S. H., Song J. B.: Control of linear motor-based arm motion generator using active impedance implementation. In: Proc. 14th IFAC World Congress. Beijing 1999, s. 551 - 556.
  • [147] Lee Y. I., Kouvaritakis B.: Superposition in efficient robust constrained predictive control. Automatica, 2002, Vol. 38(5), s. 875 - 878.
  • [148] Lee Y. I., Kouvaritakis B., Cannon M.: Constrained receding horizon predictive control for nonlinear systems. Automatica, 2002, Vol. 38(12), s. 2093 - 2102.
  • [149] Lelic M. A., Gajic Z.: A reference guide to PID controllers in the nineties. In: Proc. IFAC Workshop on Digital Control, Past, Present and Future of PID Control. Terrasa 2000, s. 73 - 82.
  • [150] Lemos J. M., Mosca E.: A multipredictor-based LQ self-tunig controller. In: Proc. IFAC Symp. on Identification and System Parameter Estimation. York 1985, s. 137 - 141.
  • [151] Leontaritis I. J., Billings S. A.: Input-output parametric models for nonlinear systems. Part I: Deterministic non-linear systems. Int. J. Control, 1985, Vol. 41, s. 303 - 328.
  • [152] Leva A., Scattolini R.: Predictive control with terminal constraints. In: Proc. 2nd European Control Conf. Groningen 1993, s. 941 - 945.
  • [153] Li G., Tsang K. M., Ho S. L.: A novel model following scheme with simple structure for electrical position servo systems. Int. J. Syst. Sci., 1998, Vol. 29, s. 959 - 969.
  • [154] Li S., Lim K., Fisher D.: A state-space formulation for model predictive control. AIChE Journal, 1989, Vol. 35, s. 241 - 249.
  • [155] Limon D., Alamo T., Camacho E. F.: Enlarging the domain of attraction of MPC controllers. Automatica, 2005, Vol. 41, s. 629 - 635.
  • [156] Ling K.-V., Maciejowski J., Wu B.-F.: Multiplexed model predictive control. In: Proc. 16th IFAC World Congress. Prague 2005, CD-ROM.
  • [157] Linkens D. A., Mahfouf M.: Generalized predictive control in clinical anaesthesia. In: Advances in Model-Based Predictive Control, ed. D. Clarke. Oxford, University Press 1994
  • [158] Liu G. P., Daley S.: Optimal tuning PID controller for industrial systems. Contr. Eng. Practice, 2001, Vol. 9, s. 1185 - 1194.
  • [159] Liu G. P., Kadirkamanathan V., Billings S. A.: Predictive control for non-linear systems using neural networks. Int. J. Control, 1998, Vol. 71(6), s. 1119 - 1132.
  • [160] Luenberger D. E.: Linear and nonlinear programming. Reading MA, Addison-Wesley 1984.
  • [161] Ławryńczuk M.: Nieliniowe algorytmy regulacji predykcyjnej z neuronowymi modelami procesów. Rozprawa doktorska, Wydział Elektroniki i Technik Informacyjnych Politechniki Warszawskiej, Warszawa 2003.
  • [162] Ławryńczuk M., Tatjewski P.: A computationally efficient nonlinear predictive control algorithm based on neural models. In: Proc. 8th IEEE Int. Conf. Methods and Models in Automation and Robotics. Szczecin 2002, s. 781 - 786.
  • [163] Ławryńczuk M., Tatjewski P.: Efektywny obliczeniowo algorytm wielowymiarowej regulacji predykcyjnej dla modeli typu wejście-wyjście. Pomiary Automatyka Kontrola, 2003, Vol. 9, s. 10 - 20.
  • [164] Ławryńczuk M., Tatjewski P.: An infinite horizon predictive control algorithm based on multivariable input-output models. Int. J. Appl. Math, and Comp. Sci., 2004, Vol. 14(2), s. 167-180.
  • [165] Ławryńczuk M., Tatjewski P.: A stable dual-mode type nonlinear predictive control algorithm based on online linearisation and quadratic programming. In: Proc. 10th Int. Conf. Methods and Models in Automation and Robotics. Międzyzdroje 2004, s. 503 - 510.
  • [166] Łobodziński W., Sankowski D., Kucharski J.: Start up identification of electric resistance furnaces, Elektrowärme International, 1995, Vol. 53, s. Bl - B4.
  • [167] Maciejowski J. M.: Predictive control with constraints. Englewood Cliffs, Prentice Hall 2002.
  • [168] Magni L., De Nicolao G., Scattolini R.: Some issues in the design of predictive controllers. Int. J. Appl. Math. and Comp. Sci., 1999, Vol. 9(1), s. 9 - 24.
  • [169] Magni L., De Nicolao G., Scattolini R.: Model predictive control: output feedback and tracking of nonlinear systems. In: Nonlinear predictive control — theory and practice, eds. B. Kouvaritakis, M. Cannon, Control Eng. Series 61. London, IEE 2001, s. 61 - 80.
  • [170] Magni L., De Nicolao G., Scattolini R., Allgöwer F.: Robust model predictive control of nonlinear discrete-time systems. Int. J. Robust and Nonlinear Contr., 2003, Vol. 13, s. 229 - 246.
  • [171] Mahfouf M., Linkens D. A.: Generalised predictive control and bioengineering. Taylor &Francis 1998.
  • [172] Mäkilä P. M., Partington J. R.: On linear models for nonlinear systems. Automatica, 2003, Vol. 39, s. 1 - 13.
  • [173] Marquis P., Broustail J. P.: SMOC, a bridge between state space and model predictive controllers: Application to the automation of a hydrotreating unit. In: Proc. IFAC Workshop on Model Based Process Control. Oxford 1988, s. 37 - 43.
  • [174] Marusak P.: Regulacja predykcyjna obiektów nieliniowych z wykorzystaniem macierzy dynamicznej i modelowania rozmytego. Rozprawa doktorska, Wydział Elektroniki i Technik Informacyjnych Politechniki Warszawskiej. Warszawa 2002.
  • [175] Marusak P., Tatjewski P.: Stability analysis of nonlinear control systems with unconstrained fuzzy predictive controllers. Arch. Contr. Sci., 2002, Vol. 12, s. 267 - 288.
  • [176] Mayne D. Q.: Optimization in model based control. In: Proc. IFAC Symp. on Dynamics and Control Chemical Reactors and Batch Processes. Helsingor 1995, s. 229 - 242.
  • [177] Mayne D. Q.: Nonlinear model predictive control: an assessment. In: Proc. 5th Int. Conf. on Chemical Process Control. CACHE, AIChE 1997, s. 217 - 231.
  • [178] Mayne D. Q.: Nonlinear model predictive control: challenges and opportunities. In: Nonlinear Predictive Control, eds. F. Allgöwer, A. Zheng. Basel, Birkhäuser 2000, s. 23 - 44.
  • [179] Mayne D. Q., Michalska H.: Receding horizon control of non-linear systems. IEEE Trans. Automat. Contr., 1990, Vol. 35(5), s. 814 - 824.
  • [180] Mayne D. Q., Rawlings J. B., Rao C. V., Scokaert P. O. M.: Constrained model predictive control: stability and optymality. Automatica, 2000, Vol. 36, s. 789 - 814.
  • [181] Mayne D. Q., Seron M. M., Raković S. V.: Robust model predictive control of constrained linear systems with bounded disturbances. Automatica, 2005, Vol. 41, s. 219 - 224.
  • [182] Meadows E. S.: Dynamic programming and model predictive control. In: Proc. American Control Conf. Albuquerque 1997, s. 1635 - 1639.
  • [183] Meadows E. S., Badgwell T. A.: Feedback through steady-state target optimization for nonlinear model predictive control. J. Vibration and Control, 1998, Vol. 4, S. 61 - 74.
  • [184] Meadows E. S., Rawlings J. B.: Receding horizon control with an infinite horizon. In: Proc. Amer. Contr. Conf. San Francisco, 1993, s. 2926 - 2930.
  • [185] Mhaskar P., El-Farra N. H., Christofides P. D.: Robust hybrid predictive control of nonlinear systems. Automatica, 2005, Vol. 41, s. 209 - 217.
  • [186] Michalska H.: A new formulation of receding horizon control without a terminal constraint on the state. European J. Control, 1997, Vol. 3(1), s. 2 - 14.
  • [187] Michalska H., Mayne D. Q.: Robust receding horizon control of constrained nonlinear systems. IEEE Trans. Automat. Contr., 1993, Vol. 38(11), s. 1623 - 1633.
  • [188] Michalska H., Mayne D. Q.: Moving horizon observers and observer-based control. IEEE Trans. Automat. Contr., 1995, Vol. 40(6), s. 995 - 1006.
  • [189] Morari M.: Model Predictive Control: Multivariable control technique of choice in the 1990s? In: Advances in Model-Based Predictive Control, ed. D. Clarke. Oxford, University Press 1994, s. 22-27.
  • [190] Morari M., Lee J. H.: Model predictive control: past, present and future. Computers and Chemical Engineering, 1999, Vol. 23, s. 667 - 682.
  • [191] Morari M., Zafiriou E.: Robust process control. Englewood Cliffs, Prentice Hall 1989.
  • [192] Mosca E.: Optimal, predictive and adaptive control. Information and System Science Series. Englewood Cliffs, Prentice Hall 1994.
  • [193] Mosca E., Zhang J.: Stable redesign of predictive control. Automatica, 1992, Vol. 28(6), s. 1229 - 1233.
  • [194] M'sahli F., Abdennour R. B., Ksouri M.: Nonlinear model-based predictive control using a generalised Hammerstein model and its application to a semi-batch reactor. Int. J. Adv. Manuf. Technol, 2002, Vol. 20, s. 844 - 852.
  • [195] Muske K. R., Rawlings J. B.: Model predictive control with linear models. AIChE Journal, 1993, Vol. 39(2), s. 262 - 287.
  • [196] Muske K. R., Rawlings J. B.: Nonlinear moving horizon state estimation. In: Methods of model based process control, ed. R. Berber. Dordrecht, Kluwer Academic Publishers 1995.
  • [197] Muske K. R., Rawlings J. B., Lee J. H.: Receding horizon recursive state estimation. In: Proc. Amer. Contr. Conf. San Francisco 1993, s. 900 - 904.
  • [198] Mutha R. K., Cluett W. R., Penlidis A.: Nonlinear model-based predictive control of control nonaffine systems. Automatica, 1997, Vol. 33, s. 907 - 913.
  • [199] Mzyk G.: Nonparametric identification of Wiener systems — a median based approach. In: Proc. 10th Int. Conf. Methods and Models in Automation and Robotics. Międzyzdroje 2004, s. 1093-1098.
  • [200] Nagy Z., Mahn B., Franke R., Allgöwer F.: Nonlinear model predictive control of batch processes: An industrial case study. In: Proc. IFAC World Congress. Prague 2005, CD-ROM.
  • [201] Narenda K. S., Gallman P. G.: An iterative method for the identification of nonlinear systems using a Hammerstein model. IEEE Trans. Automatic Contr., 1966, Vol. 11, s. 546 - 550.
  • [202] Niederliński A., Mościński J., Ogonowski Z.: Regulacja adaptacyjna. Warszawa, PWN 1995.
  • [203] Nunez-Reyas A., Normay-Rico J. E., Bordons C., Camacho E. F.: A Smith predictive based MPC in a solar air conditioning plant. J. Process Contr., 2005, Vol. 15, s. 1 - 10.
  • [204] O'Dwyer A.: Handbook of PI and PID controller tuning rules. New Jersey, World Scientific 2003.
  • [205] Ogata K.: Discrete-time control systems. Englewood Cliffs, Prentice Hall 1995.
  • [206] Ogonowski Z.: Application of model based predictive control to acrylnitryl polymerization reactor. In: Proc. 3rd IEEE Conf. on Control Application. Glasgow 1994, s. 1903 - 1908.
  • [207] Ogunnaike B. A.: Nonlinear control to industrial processes. In: Nonlinear predictive control — theory and practice, eds. B. Kouvaritakis, M. Cannon, Control Eng. Series 61. London, IEE 2001, s. 205-222.
  • [208] Oliveira G. H. C., Amaral W. C., Favier G.: Adaptive predictive controller using orthonormal series functions. Int. J. Appl. Math, and Comp. Sci., 1999, Vol. 9(1), s. 175 - 191.
  • [209] Oliveira N. M. C., Biegler L. T.: Constraint handling and stability properties of model-predictive control. AIChE Journal, 1994, Vol. 40(7), s. 1138-1155.
  • [210] Ordys A. W., Clarke D. W.: A state-space description for GPC controllers. Int. J. Syst. Sci., 1993, Vol. 24(9), s. 1727 - 1744.
  • [211] Orłowski P.: Convergence of the optimal non-linear GPC method with iterative state-dependent, linear time-varying approximation. In: Prep. Int. Workshop on assessment and future directions of nonlinear model predictive control. Freudenstadt-Lauterbad 2005, s. 491-497.
  • [212] Osypiuk R., Finkemeyer B., Wahl F.M.: Forward model-based control system for robot manipulators. Robotica, 2004, Vol. 22, s. 155 - 161.
  • [213] Osypiuk R., Pietrusewicz K., Skoczowski S.: Odporna regulacja PID o dwóch stopniach swobody. Warszawa, PWN S.A. 2006.
  • [214] Ouladsine M., Kobi A., Ragot J.: Identification of a MIMO Hammerstein model. In: Proc. 2nd European Control Conf. Groningen 1993, s. 621 - 626.
  • [215] Parisini T., Sacone S.: Stable hybrid control based on discrete-event automata and receding-horizon neural regulators. Automatica, 2001, Vol. 37(8), s. 1279 - 1292.
  • [216] Parisini T., Zoppoli R.: A receding horizon regulator for nonlinear systems and a neural approximation. Automatica, 1995, Vol. 31(10), s. 1443 - 1451.
  • [217] Park K., Kim S. H., Kwak Y. K.: Adaptive control for time optimal tracking systems. Int. J. Control, 1996, Vol. 63, s. 951 - 964.
  • [218] Parker R. S., Gatzke E. P., Mahadevan R., Meadows E. S., Doyle III F. J.: Nonlinear model predictive control: issues and application. In: Nonlinear predictive control — theory and practice, eds. B. Kouvaritakis, M. Cannon, Control Eng. Series 61. London, IEE 2001, s. 33 - 57.
  • [219] Patwardhan R. S., Lakshiminarayanan S., Shah S. L.: Constrained nonlinear MPC using Hammerstein and Wiener models: PLS framework. AIChE Journal,1998, Vol. 44, s. 1611 -1622.
  • [220] Pawlak M.: On the series expansion approach to the identification of Hammerstein systems. IEEE Trans. Automatic Contr., 1991, Vol. 36, s. 763 - 767.
  • [221] Peng L., Fisher D. G., Shah S. L.: Tuning generalized predictive control using a pole-placement criterion. In: Proc. American Control Conf. Chicago 1992, s. 2391 - 2395.
  • [222] Peng L., Hanus R.: A tuning strategy for generalized predictive control. Contr. Theory Adv. Technol, 1991, Vol. 7(1), s. 153 - 166.
  • [223] Pluymers B., Roobrouck L., Buijs J., Suykens J. A. K., De Moor B.: Constrained linear MPC with time-varying terminal cost using convex combinations. Automatica, 2005, Vol. 41, s. 831-837.
  • [224] Polak E.: Optimization: Algorithms and consistent approximations. New York, Springer- Verlag 1997.
  • [225] Polak E., Yang T. H.: Moving horizon control of linear systems with input saturation and plant uncertainty — Part 1: Robustness. Int. J. Control, 1993, Vol. 58(3), s. 613 - 638.
  • [226] Polak E., Yang T. H.: Moving horizon control of linear systems with input saturation and plant uncertainty — Part 2: Disturbance rejection and tracking. Int. J. Control, 1993, Vol. 58(3), s. 639 - 663.
  • [227] Pottmann M., Seborg D.: A nonlinear predictive control strategy based on radial basis functions models. Computers and Chem. Eng., 1997, Vol. 7(1), s. 31 -41.
  • [228] Prett D. M., Morari M. (eds.): Shell process control workshop. Stoneham, Butterworth Publisher 1987.
  • [229] Propoi A. I.: Use of linear programming methods for synthesizing sampled-data automatic systems. Automation and Remote Control, 1963, Vol. 24(7), s. 837 - 844.
  • [230] Qin S. J., Badgwell T. A.: An overview of industrial model predictive control technology. In: Proc. 5th Int. Conf. on Chemical Process Control. CACHE, AIChE 1997, s. 232 - 256.
  • [231] Qin S. J., Badgwell T. A.: A survay of industrial model predictive control technology. Contr. Eng. Pract, 2003, Vol. 11(7), s. 733 - 764.
  • [232] Rani Y. K., Unbehauen H.: Study of predictive controller tuning methods. Automatica, 1997, Vol. 33(12), s. 2243-2248.
  • [233] Rao C. V., Rawlings J. B.: Nonlinear moving horizon estimation. In: Prep. Int. Symp. Nonlinear Model Predictive Control: Assessment and future directions. Ascona 1998, s. 146-163.
  • [234] Rao C. V., Wright S. J., Rawlings, J. B.: Application of interior-point methods to model predictive control. J. Optim. Theory and Applications, 1998, Vol. 99(3), s. 723 - 757.
  • [235] Rawlings J. B., Meadows E. S., Muske K. R.: Nonlinear model predictive control: A tutorial and survey. In: Proc. ADCHEM'94. Kyoto 1994, s. 185 - 197.
  • [236] Rawlings J. B., Muske K. R.: Stability of constrained receding horizon control. IEEE Trans. Automat. Contr., 1993, Vol. 38(10), s. 1512 - 1516.
  • [237] Richalet J.: Industrial applications of model based predictive control. Automatica, 1993, Vol. 29(5), s. 1251 - 1274.
  • [238] Richalet J., Rault A., Testud J. L., Papon J.: Algorithmic control of industrial processes. In: Proc. 4th IFAC Symp. on Identification and System Parameter Estimation. Tbilisi 1976, s. 1119-1167.
  • [239] Richalet J., Rault A., Testud J. L., Papon J.: Model predictive heuristic control: application to industrial processes. Automatica, 1978, Vol. 14(2), s. 413 - 428.
  • [240] Robinson B. D., Clarke D. W.: Robustness effects of a prefilter in generalized predictive control. Proceedings IEE, Part A 1991, Vol. 138, s. 2 - 8.
  • [241] Roset B., Nijmeijer H.: Observer-based model predictive control. Int. J. Contr., 2004, Vol. 77(17), s. 1452-1462.
  • [242] Ross R.: Revolutionising model-based predictive control. IEE Computing & Control Engineering, 2004, Vol. 1, s. 26 - 29.
  • [243] Rossiter J. A.: Model-based predictive control: a practical approach. Boca, CRC Press 2003.
  • [244] Rossiter J. A., Kouvaritakis B.: Numerical robustness and efficiency of generalised predictive control algorithms with guaranted stability. Proceedings IEE, Part D, 1994, Vol. 141(3), s. 154-162.
  • [245] Rossiter J. A., Kouvaritakis B., Gossner J. R.: Feasibility and stability results for constrained stable generalised predictive control. Automatica, 1995, Vol. 31(6), s. 863 - 877.
  • [246] Rossiter J. A., Kouvaritakis B., Rice M. J.: A numerically robust state-space approach to stable-predictive control strategies. Automatica, 1998, Vol. 34(1), s. 65 - 74.
  • [247] Rouhani R., Mehra R. K.: Model algorithmic control — basic theoretical properties. Automatica, 1982, Vol. 18(4), s. 401 - 414.
  • [248] Rutkowski L.: Metody i techniki sztucznej inteligencji. Inteligencja obliczeniowa. Warszawa, Wydawnictwo Naukowe PWN 2005.
  • [249] Sakizlis V., Kakalis N. M. P., Dua V., Perkins J. D., Pistikopoulos E. N.: Design of robust model-based controllers via parametric programming. Automatica, 2004, Vol. 40, s. 189-201.
  • [250] Sarimveis H., Bafas G.: Fuzzy model predictive control of non-linear processes using genetic algorithms. Fuzzy Sets and Systems, 2003, Vol. 139, s. 59 - 80.
  • [251] Scattolini R., Bittani S.: On the choice of the horizon in long-range predictive control: Some simple criteria. Automatica, 1990, Vol. 26(3), s. 915 - 917.
  • [252] Scokaert P.: Infinite horizon generalized predictive control. Int. J. Control, 1997, Vol. 66, s. 161-175.
  • [253] Scokaert P. O. M., Mayne D. Q., Rawlings J. B.: Suboptimal model predictive control (feasibility implies stability). IEEE Trans. Automat. Contr., 1999, Vol. 44(3), s. 648 - 654.
  • [254] Scokaert P. O. M., Rawlings J. B.: Infinite horizon linear quadratic control with constraints. In: Proc. IFAC World Congress. San Francisco 1998, s. 109 - 114.
  • [255] Scokaert P. O. M., Rawlings J. B.: Feasibility issues in linear model predictive control. AIChE Journal, 1999, Vol. 45(8), s. 1649 - 1659.
  • [256] Seborg D. E.: A perspective on advanced strategies for process control (revisited). In: Advances in Control. Highlights of ECC'99, ed. P. M. Frank. Berlin, Springer-Verlag 1999, s. 103 - 134.
  • [257] Sentoni G., Agamennoni O., Desages A., Romagnoli J.: Approximate models for nonlinear process control. AIChE Journal, 1996, Vol. 42, s. 2240 - 2250.
  • [258] Silva G. J., Datta A., Bhattacharyya S. P.: New results on the synthesis of PID controllers. IEEE Trans. Automat. Contr., 2002, Vol. 47, s. 241 - 252.
  • [259] Skoczowski S.: Identyfikacja praktyczna modeli transmitancyjnych na podstawie początkowej fazy odpowiedzi skokowej. Kwartalnik Elektroniki i Telekomunikacji, 1995, Vol. 1, s. 5 - 29
  • [260] Skoczowski S.: Approximate sampled-data model parameter identification for electroheating processes by means of the heating-up characteristic. In: Proc. 16th IASTED Int. Conf. Modeling, Identification and Control. Innsbruck 1997, s. 148-151.
  • [261] Skoczowski S.: Evaluation of order and the spread of time constants for aperiodic processes using step response. Contr. Eng. Practice, 1997, Vol. 5(8), s. 1077 - 1089.
  • [262] Skoczowski S.: A new approach to identification and modelling of electroheating control processes. In: Proc. 5th Int. Symp. on Methods and Models in Automation and Robotics. Międzyzdroje 1998, s. 549 - 553.
  • [263] Skoczowski S.: Odporny układ regulacji z wykorzystaniem modelu obiektu. Pomiary Automatyka Kontrola, 1999, Vol. 9, s. 2 - 4.
  • [264] Skoczowski S.: Robust model following control with use of a plant model. Int. J. Syst. Sci., 2001, Vol. 32, s. 1413 -1427.
  • [265] Skoczowski S.: Struktury układów automatycznej regulacji oraz ich właściwości odpornościowe. W: Mat. XIV Krajowej Konferencji Automatyki, t. 1. Zielona Góra 2002, s. 507 - 514.
  • [266] Skoczowski S., Domek S.: PID robust model following control. In: Digital Control 2000: Past, Present and Future of PID Control, eds. J. Quevedo, T. Escobet, IFAC Proceedings Volumes. Elsevier 2000, s. 37 - 42.
  • [267] Skoczowski S., Domek S.: Robustness of a model following control system. In: Proc. Int. Conf. Mathematical Theory of Networks and Systems — MTNS. Perpignan 2000, CD-ROM.
  • [268] Skoczowski S., Domek S.: Robust model following control system. In: Intelligent Components and Instruments for Control Applications, ed. A. T. Casucci, IFAC Proceedings Volumes. Elsevier 2001, s. 143 - 148
  • [269] Skoczowski S., Domek S.: Robust model following PID control. Systems Science, 2002, Vol. 28(1), s. 59-70.
  • [270] Skoczowski S., Domek S., Pietrusewicz K.: Model following PID control. Kybernetes, 2003, Vol. 32(5/6), s. 818 - 828.
  • [271] Skoczowski S., Domek S., Pietrusewicz K., Broel-Plater B.: Robust model following PID control and its implementation on PLC. In: Robust Control Design 2003, eds. P. Colaneri, S. Bittanti, IFAC Proceedings Volumes. Elsevier 2004, s. 293 - 298.
  • [272] Skoczowski S., Domek S., Pietrusewicz K., Broel-Plater B.: A method for improving the robustness of PID control. IEEE Trans. Industrial Electronics, 2005, Vol. 52(6), s. 1669 - 1676.
  • [273] Skogestad S., Postlethwaite I: Multivariable feedback control. New York, John Wiley 1996.
  • [274] Skrjanc I., Matko D.: Fuzzy predictive controller with adaptive gain. In: Advances in Model-Based Predictive Control, ed. D. Clarke. Oxford, University Press 1994, s. 370 - 385.
  • [275] Slotine J. J., Li W.: Applied nonlinear control. Englewood Cliffs, Prentice Hall 1991.
  • [276] Smith O. J. M.: Close control of loops with deadtime. Chem. Eng. Prog., 1957, Vol. 53(5), s. 217.
  • [277] Söeterboek R.: Predictive control. A unified approach. Englewood Cliffs, Prentice Hall 1992.
  • [278] Stabrowski M. M.: New pivoted banded linear equations solvers. Communications in Numerical Methods in Eng., 2000, Vol. 16, s. 315 - 323.
  • [279] Stewart G. W.: Introduction to matrix computations. New York, Academic Press 1973.
  • [280] Sugie T., Osuka K.: Robust model following control with prescribed accuracy for uncertain nonlinear systems. Int. J. Contr., 1993, Vol. 58, s. 991 - 1009.
  • [281] Tadeusiewicz R.: Sieci neuronowe. Warszawa, Akademicka Oficyna Wydawnicza RM 1993.
  • [282] Tadmor G.: Receding horizon revisited: An easy way to stabilize an LTV system. Systems & Control Letters, 1992, Vol. 8, s. 285 - 294.
  • [283] Takagi T., Sugeno M.: Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Systems, Man, and Cybernetics, 1985, Vol. 15, s. 116 - 132.
  • [284] Tan K. K., Wang Q. G., Hang C. C., Hägglund T. J.: Advances in PID control. Advances in Industrial control. London, Springer-Verlag 1999.
  • [285] Tatjewski P.: Sterowanie zaawansowane obiektów przemysłowych. Struktury i algorytmy. Seria: Monografie Komitetu Automatyki i Robotyki PAN, Warszawa, Akademicka Oficyna Wydawnicza EXIT 2002.
  • [286] Tatjewski P., Ławryńczuk M.: Soft computing in model-based predictive control. Int. J. Appl. Math. Comput. Sci., 2006, Vol. 16(1), s. 7 - 26.
  • [287] Tatjewski P., Ławryńczuk M., Marusak P.: Wybrane algorytmy regulacji predykcyjnej procesów nieliniowych. W: Mat. XIV Krajowej Konferencji Automatyki. Zielona Góra 2002, s. 145-152.
  • [288] Thomas Y. A.: Linear quadratic optimal estimation and control with receding horizon. Electronics Letters, 1975, Vol. 11,s.19 - 21.
  • [289] Townsend S., Irwin G. W.: Nonlinear model based predictive control using multiple local models. In: Nonlinear predictive control — theory and practice, eds. B. Kouvaritakis, M. Cannon, Control Eng. Series 61. London, IEE 2001, s. 223 - 244.
  • [290] Tsang K., Li G.: Nonlinear nominal model following control to overcome deadzone nonlinearities. IEEE Trans, on Industrial Electronics, 2001, Vol. 48, s. 177 - 184.
  • [291] Verhaegen M., Westwick D.: Identifying MIMO Hammerstein systems in the context of subspace model identification methods. Int. J. Control, 1996, Vol. 63, s. 331 - 349.
  • [292] Vila J. P., Wagner V.: Predictive neuro-control of uncertain systems: Design and use of a neuro-optimizer. Automatica, 2003, Vol. 39(5), s. 767 - 777.
  • [293] Voros J.: Parameter identification of discontinuous Hammerstein systems. Automatica, 1997, Vol. 33, s.l141-1146.
  • [294] Wang L. X., Wan F.: Structured neural networks for constrained model predictive control. Automatica, 2001, Vol. 37(8), s. 1235 - 1243.
  • [295] Wang Q. G., Hang C. C., Yang X. P.: Single-loop controller design via IMC principles. Automatica, 2001, Vol. 37, s. 2041 - 2048.
  • [296] Wang W.: A direct adaptive generalized predictive algorithm with guaranteed stability. Int. J. Adaptive Contr. and Signal Proc, 1994, Vol. 8, s. 211 - 222.
  • [297] Wang W., Henriksen R.: Generalized predictive control of nonlinear systems of the Hammerstein form. In: Proc. 2nd European Control Conf. Groningen 1993, s. 926 - 931.
  • [298] Wellers M., Rake H.: Nonlinear model predictive control based on stable Wiener and Hammerstein models. In: Prep. Int. Symp. on Nonlinear Model Predictive Control: Assessment and future directions. Ascona 1998.
  • [299] Wills A., Heath W.: Interior-point algorithms for non-linear model predictive control. In: Prep. Int. Workshop on Assessment and Future Directions of Nonlinear Model Predictive Control. Freudenstadt-Lauterbad 2005, s. 281 - 288.
  • [300] Wright S. J.: Applying new optimization algorithms to model predictive control. In: Proc. 5th Int. Conf. on Chemical Process Control. CACHE, AIChE 1997, s. 147 - 155.
  • [301] Wu H., Kawabata H.: Robust model following control with zero-tracking error for a class of uncertain linear systems. In: Proc. of the IEEE Hong-Kong Symp. Robotics and Control. Hong-Kong 1999, s. 85-90.
  • [302] Ydstie B. E.: Extended horizon adaptive control. In: Proc. 9th IFAC World Congress. Budapest 1984, Vol. 7, s. 133 - 137.
  • [303] Yoon T. W., Clarke D.: Receding-horizon predictive control with exponential weighting. Int. J. Syst. Sci., 1993, Vol. 24(9), s. 1745 - 1757.
  • [304] Yoon T. W., Clarke D.: Observer design in receding-horizon predictive control. Int. J. Control, 1995, Vol. 61(1), s. 171 - 191.
  • [305] Youssef A., Ordys A., Grimble M.: Comparison of nonlinear predictive control techniques for a ducted fan model. In: Proc. 9th IEEE Conf. on Methods and Models in Automation and Robotics. Międzyzdroje 2003, s. 519 - 524.
  • [306] Zhang B., Li P., Zhang W.: Predictive functional control of integrating process based on impulse response. In: Proc. IFAC World Congress. Prague 2005, CD-ROM.
  • [307] Zhang J., Xi Y.: Some GPC stability results. Int. J. Control, 1998, Vol. 70(5), s. 831 - 840.
  • [308] Zhu Q. M., Warwick K., Douce J. L.: Adaptive general predictive controller for nonlinear systems. Proceedings IEE, Part D, 1991, Vol. 138(1), s. 33 -40.
  • [309] Zhu Y., Back T.: Identification of multivariable industrial processes. London, Springer-Verlag 1993.
  • [310] Zi-Qiang L.: On identification of controlled plants described by the Hammerstein system. IEEE Trans. Automat. Contr., 1994, Vol. 39(3), s. 569 - 573.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0039-0083
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.