PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Zastosowanie modyfikowanego TiO2 w procesach fotokatalicznego utleniania związków organicznych w roztworach wodnych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
The use modified TiO2 in processes photocatalytical oxidation of organic compounds in water solutions
Konferencja
Promieniowanie optyczne : oddziaływanie, metrologia, technologie : POOMT 2006 / Konferencja (II ; 4-6.10.2006 ; Krasiczyn, Polska)
Języki publikacji
PL
Abstrakty
PL
Rozwój przemysłu oraz intensyfikacja rolnictwa powodują silne zanieczyszczenie środowiska wodnego, zatem konieczne jest jego oczyszczanie. Obecnie uważa się, że najkorzystniejsze jest stosowanie wysokoefektywnych i wieloetapowych technologii między innymi mogących wykorzystywać procesy zaawansowanego utleniania (AOP). Jednym z przykładów AOP jest proces fotokatalitycznego utleniania z wykorzystaniem półprzewodników - głównie ditlenku tytanu, badanego w odniesieniu do związków modelowych oraz ścieków. W celu poprawy wydajności i efektywności procesu fotokatalitycznego oraz ułatwienia jego technologii prowadzone są prace w dwóch kierunkach: modyfikacji katalizatora zwiększającej jego aktywność, pozwalającej na inicjowanie reakcji światłem widzialnym; a także nanoszeniu TiO2 na różne nośniki rozwijające powierzchnię oraz pozwalające na immobilizowanie katalizatora na elementach reaktorach. Praca przedstawia przegląd wyników badań naukowych w omawianym zakresie w odniesieniu do układów modelowych i ścieków. Opisuje rozwiązania techniczne oraz omawia pracujące instalacje pilotowe.
EN
The development of the industry and the intensification of agriculture cause strong pollution of the environmental water. That is necessary to clean it. Application of multi-steps technologies of high-selectivity is one of the most profitable among advanced oxidation techniques (AOP). The process of photocatalytical oxidation semiconductors is one of AOP examples - mainly titanium dioxide, wide studied in the reference to simulation compounds and sewages. To improve of productivity and the efficiency of the photocatalytical process two main directions in research can be highlighted: modification of the catalyst to improve its activity and possibility of initialization of reaction with VIiS-light; and immobilization of catalyst on reactors. In the present work the review of photocatalytical oxidaton on TiO2 results related to model systems and savages as well as technical solutions and pilot installations will be presented.
Rocznik
Tom
Strony
203--223
Opis fizyczny
Bibliogr. 64 poz., tab., rys.
Twórcy
autor
autor
  • Międzyresortowy Instytut Techniki Radiacyjnej, Politechnika Łódzka, 93-590 Łódź, ul. Wróblewskiego 15, japerepi@mitr.p.lodz.pl
Bibliografia
  • 1. Al-Ekabi H., Serpone N., (1988), " Kinetic studies in heterogeneus photocatalysis. 1. Photocatalytic degradation of chlorinated phenols in aerated aqueous solutions over TiO2 supported on a glass matrix ", J. Phys. Chem. 92, pp. 5726 - 5731
  • 2. Arana J., Diaz O.G., Sarach M.M., Rodriguez J.M.D., Melián J.A.H., Pena J.P., "Photocatalytic degradation of formie acid using Fe/TiO2 catalysts: the role of Fe3+/Fe2+ ions in the degradation mechanism ", Applied Catalysis B: Environmental 32 (2001), pp. 49 – 61
  • 3. Baran W., Makowski A., Wardas W., " The separation of catalyst after Photocatalytic reactions conducted in the presence of TiO2/FeCl3/UV ", Chemosphere 59 (2005), pp. 853 – 859 Legrini O., Oliveros E., Braun A.M, " Photochemical Process for Water Treatment ", Chem. Rev. 93, (1993), pp. 671 – 698
  • 4. Bessekhouad Y., Robert D., Weber J.-V., "Photocatalytic activity of Cu2O/Ti02, Bi2O3/TiO2 and ZnMn2O4/TiO2 hatarojunctions ", Catalysis Today 101 (2005), pp. 315 - 321
  • 5. Blažková A., Csölleová I., Brezová V., " Effects of light sources of the phenol degradation using Pt/TiO2 photocatalysts immobilized on glass fibers ", Journal of Photochemistry and Photobiology A: Chemistry 113 (1998), pp.251 - 256 Prousek J.," Advance oxidation process for water treatment. Part I: Chemical process. Part II: Photochemical process" Chem. Listy 90, (1996), pp.229 - 237, 307, 315.
  • 6. Bouquet-Somrani C, Finiels, Graffin P., Olive J.L., (1996), " Photocatalytic degradation of hydroxylated biphenyl compounds ", Applied Catalysis B: Environmental 8, pp. 101-106
  • 7. Calza P., Minero C., Pelizzetti E., (1997) " Photocatalytic transformation of chlorinated methanes in the presence of electron and hole scavengeres ", J.Chem.Soc, Faraday Trans. 93 (21), pp. 3765 – 3771
  • 8. Calza P., Minero C, Pelizzetti E., (1997), " Photocatalytically assisted hydrolysis of chlorinated methanes under anaerobic conditions ", Environ., Sci., Technol. 31, pp.2198-2203
  • 9. Chen F., Xie Y., Zhao J., Lu G., " Photocatalytic degradation of dyes on a magnetically separatek photocatalyst dunder visible and UV irradiation ", Chemosphere 44 (2001), pp. 1159-1168
  • 10. Chen J., Liu M., Zhang J., Ying X., Jin L., " Photocatalytic degradation of organic wastes by electrochemically assisted TiO2 photocatalytic system ", Journal of Environmental Management 70 (2004), pp.43 – 47
  • 11. Chen J., Ollis D.F., Rulkens W.H., Bruning H., "Photocatalyzed oxidation of alcohols and organochlorides in the presence of native TiO2 and metallized TiO2 suspension. Part (I): Photocatalytic activity and pH influence", Water Research (1999)33, (3), 661
  • 12. Chiarenzelli J.R., Scrudato R.J., Rafferty D.E., Wunderlich M.L, Roberts R.N., Pagano J.J., Yates M., (1995), " Photocatalytic degradation of simulated pesticides rinsates in water and water + soil matrices ", Chemosphere 30 (1), pp. 173 – 185 Turner J.C.R. "An introduction to the theory of catalytic reactors", Catalysis Science and Technology, vol. 1. Springer - Verlag, Berlin, Germany, 1981, pp. 43 – 86
  • 13. Choi W., Hoffmann M.R., (1996), " Kinetics and mechanism of CCI4 photoreductive degradation on TiO2: The role of trichloromethyl radical and dichlorocarbene ", J. Phys. Chem. 100 (6), pp. 2161 – 2169
  • 14. Coleman H.M., Chiang K., Amal R., " Effects of Ag and Pt on photocatalytic degradation of endocrine disrupting chemicals in water ", Chemicals Engineering Journal 113(2005), pp. 65 – 72
  • 15. Dombi A.; Fekete Z.A.; Kiricsi I., "In situ photocatalytic reactor with FT-IR analysis for heterogeneous catalytic studies", Applied Catalysis A: General 193, L5-L8, (2000).
  • 16. Dominguez C, Garcia J., Pedraz M.A., Torres A., Galán M.A., " Photocatalytic oxidation of organic pollutants in water ", Catalysis Today 40 (1998), pp. 85 – 101
  • 17. Dube S., Rao N.N., " Rate parameter independence on the organic reactant: a study of adsorption and photocatalytic oxidation of surfactants using MO3 - TiO2 (M = Mo or V) catalysts ", Journal of Photochemistry and Photobiology A: Chemistry 93 (1996), pp.71-77
  • 18. Frank S.N., Bard A.J., " Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders ", The Journal of Physical Chemistry 81 (1977), 15, pp. 1484-1488
  • 19. Fu H., Lu G., Li S., "Adsorption and photo-induced reduction Cr(VI) ion in Cr(VI)-4CP(4-chlorophenol) aqueous system in the presence of TiO2 as photocatalyst" Journal of Photochemistry and Photobiology A: Chemistry, (1998), 114, 81
  • 20. Galindo C., Jacques P., Kalt A., (2000), " Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes: UV / H2O2, UV / TiO2 and VIS / TiO2. Comparative mechanistic and kinetic investigations ", J. Photochem. Photobiol. A: Chem. 130, pp. 35 – 47
  • 21. Galvez J.; Rodriguez M.; "Solar Detoxification", (2000).
  • 22. Gao X., Wachs I.E., "Titania-silica as catalysts: molecular structural characteristics and physico-chemical properties", Catalysis Today, (1999), 51, 233
  • 23. Gianluca Li Puma; PoLock Yue, 'The modeling of a fountain photocatalytic reactor with a parabolic profile", Chemical Engineering Science 56, 721-726,(2001).
  • 24. Gupta A.K., Pal A., Sahoo C., "Photocatalytic degradation of a mixture of Crystal Violet (Basic Violet 3) and Methyl Red dye in aqueous suspension using Ag+ doped TiO2", Dyes and Pigments 69 (2006), pp. 224 – 232
  • 25. Herman J.M., " Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants ", Catalysis Today 53 (1999), pp. 115 – 129
  • 26. Hidaka H., Zhao J., (1992), " Photodegradation of surfactants catalyzed by a TiO2 semiconductor", Colloids and Surfaces 67, pp. 165-182
  • 27. Hidaka H., Zhao J., Satoh Y., Nohara K., Pelizzetti E., Serpone N., (1994), "Photodegradation of surfactants. Part XII: Photocatalyzed mineralization of phosphorus - containing surfactants at TiO2/H2O interfaces ", Journal of Molecular Catalysis 88, pp. 239 -248
  • 28. Hidaka H., Zhao J., Pelizzetti E., Serpone N., (1992), " Photodegradation of surfactants 8: Comprarasion of Photocatalytic Processes between Anionic Sodium Dodecylbenzenesulfonate and Cationic Benzyldodecyldimethylammonium Chloride on the TiO2 Surface ", The Journal of Physical Chemistry 96, pp. 2226 – 2230
  • 29. Hidaka H., Zhao J., Kitamura K., Nohara K., Serpone N., Pelizzetti E., (1992), "Photodegradation of surfactants IX: The photocatalysed oxidation of polyoxyethylene alkyl ether homologues at TiO2 - water interfaces ", J. Photochem. Photobiol. A: Chem. 64, pp. 103-113
  • 30. Hilgendorff M., Hilgendorff M., Bahnemann D.W., (1996), " Mechanisms of photocatalysis: The reductive degradation of tetrachloromethane in aqueous titanium dioxide suspensions ", J. Adv. Oxid. Technol. 1 (1), pp. 35 – 43
  • 31. Hoffmann M.R., Martin S.T., Choi W., Bahnemann D.W.," Environmental Applications of Semiconductor Photocatalysis ", Chemical Review 95 (1), (1995), pp. 69 – 96
  • 32. Hofstadier K., Bauer R., " New reactor design for Photocatalytic wastewater treatment with TiO2 immobilized on fused - silica glass fibers: photomineralization of 4-chlorophenol ", Environmental Science Technology 28 (1994), pp. 670 – 674
  • 33. Horikoshi S., Serpone N., Hisamatu Y., Hidaka H. "Photocatalyzed degradation of polymers in aqueous semiconductor suspension. 3. Photooxidation of a solid polymer: TiO2-blended poly(vinyl chloride) film", Enviromental Science Technology, 32, 24, 4010, 1998
  • 34. Kaniou S., Pitarakis K., Barlagianni I., Poulios I. “Photocatalytic oxidation of , sulfamethazine ", Chemosphere 60 (2005), pp. 372 – 380
  • 35. Khali M.M.H., Abdel-Shafi A.A., Abdel-Mottaleb M.S.A., (1999), " Photocatalytic degradation of some toxic analytical reagents with TiO2 ", International Journal of Photoenergy 1 (1), pp. 85-88
  • 36. Kim K.D., Han D.N., Lee J.B., Kim T.K., "Formation and characterization of Ag-deposited TiO2 nanoparticles by chemicals reduction method ", Scripta Materialia 54 (2006), pp. 143-146
  • 37. Kinkennon A.E., Green D.B., Hutchinson B., (1995), " The use of simulated or concentrated natural radiation for the TiO2-mediated photodecomposition of Basagran, Diquat and Diuron ", Chemosphere 31 (7), pp. 3663 - 3671
  • 38. Lea J., Adesina A.A., (1998), " The photo - oxidative degradation of sodium dodecyl sulphate in aerated aqueous TiO2 suspension ", Journal of Photochemistry Photobiology A: Chemistry 118, pp. 111 - 122
  • 39. Legrini O., Oliveros E., Braun E., "Photochemical processes for water treatment", Chemical Reviews, (1993), 93, 671
  • 40. Li Y., Li X., Li J., Yin J., " Photocatalytic degradation of methyl orange in sparged tube reactor with TiO2-coated activated carbon composites ", Catalysis Communications 6 (2005), pp. 650 - 655
  • 41. Linselbigler A.L., Lu G., Yates J., "Photocatalysis on TiO2 surfaces: principles, mechanisms and selected results", Chemical Reviews, (1995), 95, 735
  • 42. Litter M., I., "Heterogeneous photocatalysis. Transition metal ions in photocatalytic system" Applied Catalysis B: Enviromental, (1999), 23, 89
  • 43. Lizama C, Freer J., Baeza J., Mansilla H.D., " Optimized photodegradation of Reactive Blue 19 on TiO2 and ZnO suspensions ", Catalysis Today 76 (2002), pp.235 - 246
  • 44. Maier M.; Maier D., "A novel irradiation system for the in - situ remediation of groundwater contaminated with PAHs and Vinylchloride", Proc. 2nd European Workshop on Water, Air and Soil Treatment by Advanced Oxidation Technologies, Universite de Poitiers, 28.02 -2.03.2001, Francja
  • 45. Matthews R.W., "Photooxidative degradation of coloured organics in water using supported catalysts. TiO2 on sand", Water Research, (1991), 25, (10), 11696
  • 46. Obuchi E., Sakamoto T., Nakano K., " Photocatalytic decomposition of acetaldehyde over TiO2/SiO2 catalyst ", Chemical Engineering Science 54 (1999), pp. 1525 - 1530
  • 47. Ollis D.F., AI-Ekabi H., "Photocatalytic of Purification and Treatment of Water and Air", Elsevier: Amsterdam, 1993
  • 48. Patric B., Kamat P.V., "Photosensitization of large-bandgap semiconductors. Charge injection from triplet excited thionine into ZnO colloids", Journal of Physical Chemistry, (1992), 96, 1423
  • 49. Pelizzetti E., Minero C.," Metal Oxides as Photocatalyst for Environmental Detoxification", Comments Inorg. Chem., 15, (1994), (5 & 6), pp. 297 - 337
  • 50. Perkowski J., Rouba J., Kos L., " Radiacyjno - chemiczna metoda rozkładu zanieczyszczeń zawartych w ściekach włókienniczych ", Przegląd Włókienniczy, (1986), 40, pp. 148 -150
  • 51. Prousek J.," Advance oxidation process for water treatment. Part I: Chemical process. Part II: Photochemical process. ", Chem. Listy 90, (1996), pp.229 - 237, 307, 315.
  • 52. Ray A.K., Beenackers A.A.C.M., "Development of a new photocatalytic reactor for a water purification" Catalysis Today, (1998), 40, 73
  • 53. Rodriguez S.M., Richter C., Galvez J.B., Vincent M., (1996), " Photocatalytic degradation of industrial residual waters ", Solar Energy 56 (5), pp. 401 – 410
  • 54. Sabin F., Türk T., Vogler A., (1992), " Photo-oxidation of organic compounds in the presence of titanium dioxide: determination of efficiency ", J. Photochem. Photobiol. A: Chem.63, pp. 99-106
  • 55. Sene J.J., Zeltner W.A., Anderson M.A., "Fundamental photoelectrocatalytic and electrophoreric mobility studiem of TiO2 and V-doped TiO2 thin-film electrode materiale ", J. Phys. Chem. B 107 (2003), pp.1597 – 1603
  • 56. Sheng H. Lin, Chi M. Lin, Horng G. Leu, (1999), " Operating characteristics and kinetic studies of surfactant wastewater treatment by Fenton oxidation ", War. Res. 33 pp. 1735 – 1741
  • 57. Takeda N., Torimoto T., Sampath S., Kuwabata S., Yooneyama H., "Effect of inert supports for titanium dioxide loading on enhancement of photodecomposition rate of gaseous propionaldehyde", Journal of Physical Chemistry, (1995), 99, 9986
  • 58. Tanaka K., Abe K., Hisanaga T, "Photocatalytic water treatment on immobilized TiO2 combined with ozonation", Journal of Photochemistry and Photobiology A: Chemistry (1996), 101,85
  • 59. Tennakone K., Tilakarante C.T.K., Kottegoda I.R.M., "Photocatalytic degradation of organic contaminants in water with TiO2 supported on polythene fllms", Journal of Photochemistry and Photobiology A: Chemistry, (1995), 87, 177
  • 60. Turner J.C.R., " An introduction to the theory of catalytic reactors", Catalysis Science and Technology, vol. 1. Springer- Verlag, Berlin, Germany, 1981, pp. 43 - 86
  • 61. Xie Y.B., Li X.Z., " Interactive oxidation of photoelectrocatalysis and elektro-Fenton for azo dye degradation using TiO2 - Ti mesh and reticulated vitreous carbon electrodes ", Materials Chemistry and Physics 95 (2006), pp. 39 - 50
  • 62. Yuan Z., Jia J., Hang L., " Influence of co-doping of Zn(II) + Fe(III) on the photocatalytic activity of TiO2 for phenol degradation ", Materiale Chemistry and Physic 73 (2002), pp. 323 - 326
  • 63. Zaleska A., " Degradacja pestycydów chloroorganicznych w układzie UV / TiO2", Studium doktoranckie przy Wydziale Chemicznym Politechniki Gdańskiej, 2000
  • 64. " Zaawansowane techniki utlenienia w Ochronie Środowiska ", Polska Akademia Nauk, Oddział w Łodzi, Komisja Ochrony Środowiska, Pod redakcją Romana Zarzyckiego, Łódź 2002
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0038-0018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.