PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Practical implications of fine-scale intermittency in turbulent flows

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Many phenomena observed in chemical engineering and chemical technology processes and operations depend on the fine-scale properties of turbulence. Traditional theories are based on local average values of the rate of kinetic energy dissipation, the rates of strain, turbulent stresses, r.m.s. velocity fluctuations etc. A multifractal formalism is used to describe intermittency and in particular to express distributions of the above mentioned quantities. Multifractal formalism is used in this work to derive equations for the rates of drop breakage and coalescence, particle agglomeration, as well as maximum stable sizes of droplets and aggregates. It is shown how scaling-up intermittency changes the fine scale turbulence and its interactions with several processes. The limitations of CFD methods are discussed in this context.
Słowa kluczowe
Rocznik
Strony
79--86
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
  • Department of Chemical and Process Engineering, Warsaw University of Technology, ul. Waryńskiego 1, 00-645 Warszawa, podgorsw@ichip.pw.edu.pl
Bibliografia
  • (1) Stręk F.: Mieszanie i mieszalniki, Wydawnictwa Naukowo Techniczne, Warszawa, 1981.
  • (2) Stręk F., Karcz J., Łącki H.: Problemy powiększania skali mieszalników cieczy, Inżynieria Chemiczna i Procesowa, 1987, 8, 601.
  • (3) Kolmogorov A. N.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, Doklady Akademii Nauk SSSR, 1941, 30, 301.
  • (4) Kolmogorov A. N.: A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number, Journal of Fluid Mechanics, 1962, 13, 82.
  • (5) Mandelbrot B.: Fractals: form, chance and dimension. Freeman & Co. (Editor), San Francisco, 1977.
  • (6) Parisi G., Frisch U.: On the singularity structure of fully developed turbulence, in: Turbulence and predictability in geophysical fluid dynamics and climate dynamics, eds. M. Ghil, R. Benzi and G. Parisi, North-Holland, Amsterdam, 1985, 84.
  • (7) Kołmogorov A. N.: Disintegration of drops in turbulent flows, Doklady Akademii Nauk SSSR, 1949, 66, 825.
  • (8) Batchelor G. K., Townsend A. A.: The nature of turbulent motion at large wave numbers, Proceeding of Royal Society, 1949, A 199, 238.
  • (9) Chhabra A., Jensen R.: Direct determination of the F(alpha) Spectrum, Physical Review Letters, 1989, 62, 1327.
  • (10) Bałdyga J., Bourne J. R.: Interpretation of turbulent mixing using fractals and multifractals, Chemical Engineering Science, 1995, 50, 381.
  • (11) Bałdyga J., Podgórska W.: Drop break-up in intermittent turbulence: Maximum stable and transient sizes of drops, The Canadian Journal of Chemical Engineering, 1998, 76, 456.
  • (12) Konno M., Aoki M., Saito S.: Scale effect on breakup process in liquid-liquid agitated tanks, Journal of Chemical Engineering of Japan, 1983, 16, 312.
  • (13) Lam A., Sathyagal A. N., Kumar S., Ramkrishna D.: Maximum stable drop diameter in stirred dispersions, A.I.Ch.E. Journal, 1996, 42, 1547.
  • (14) Podgórska W.: Modeling of high viscosity oil drop breakage process in intermittent turbulence, Chemical Engineering Science, 2006, 61, 2986.
  • (15) Bałdyga J., Bourne J. R., Pacek A. W., Amanullah A., Nienow A. W.: Effects of agitation and scale-up on drop size in turbulent dispersions: allowance for intermittency, Chemical Engineering Science, 2001, 56, 3377.
  • (16) Obukhov A. M.: Spectrum of energy of turbulent flow, Doklady Akademii Nauk SSSR, 1941, 32, 22.
  • (17) Arai K., Konno M., Matunaga Y., Saito S.: Effect of dispersed-phase viscosity on the maximum stable drop size for breakup in turbulent flow, Journal of Chemical Engineering of Japan, 1977, 10, 325.
  • (18) Grace H. P.: Dispersion phenomenon in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems, Chemical Engineering Communications, 1982, 14, 225.
  • (19) Sonntag R. C, Russel W. B.: Structure and breakup of flocs subjected to fluid stresses, II. Theory, Journal of Colloid and Interface Science, 1987, 115, 378.
  • (20) Kuboi R., Komasawa I., Otake T., Collision and coalescence of dispersed drops in turbulent liquid flow, Journal of Chemical Engineering of Japan, 1972, 5, 423.
  • (21) David R., Marchal P., Klein J. P., Villermaux J.: Crystallization and precipitation engineering - III. A discrete formulation of the agglomeration rate of crystals in a crystallization process, Chemical Engineering Science, 1991, 46, 205.
  • (22) Bałdyga J., Jasińska M., Krasiński A., Rożeń A.: Effects of fine scale turbulent flow and mixing in agglomerative precipitation, Chemical Engineering and Technology, 2004, 27, 315.
  • (23) Saffman P. G., Turner, J. S.: On the collision of drops in turbulent clouds, Journal of Fluid Mechanics, 1956, 1, 16.
  • (24) Podgórska W., Bałdyga J. B.: Scale-up effects on the drop size distribution of liquid-liquid dispersions in agitated vessels, Chemical Engineering Science, 2001, 56, 741.
  • (25) Podgórska W.: Scale-up effects in coalescing dispersions - comparison of liquid-liquid systems differing in interface mobility, Chemical Engineering Science, 2005, 60, 2115.
  • (26) Coulaloglou C. A., Tavlarides L. L.: Description of interaction processes in agitated liquid-liquid dispersions. Chemical Engineering Science, 1977, 32, 1289.
  • (27) Pohorecki R., Bałdyga J., Ryszczuk A., Motyl T.: Erythrocyte destruction during turbulent mixing, Biochemical Engineering Journal, 2001, 9, 147.
  • (28) Bałdyga J., Furmanowa M., Golis W., Szypuła W., Kozak D., Stępień M.: Wpływ burzliwości na komórki roślinne w kulturze zawiesinowej, Inżynieria Chemiczna i Procesowa, 2001, 22, 3B, 193.
  • (29) Kubicki D., Mixing effects in precipitation induced by mixing with supercritical fluid, PhD thesis, Warsaw University of Technology, 2006.
  • (30) Henczka M., Bałdyga J., Shekunov B.: Modelling of spray-freezing with compressed carbon dioxide, Chemical Engineering Science, 2006, 61, 2880.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0037-0024
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.